

Total Station Manual

Preface

Thanks a lot for purchasing our total station!

This manual is your good helper, please read it carefully before using the instrument and keep it safely.

Product affirms:
In order to get the best service from our company, please feedback your instruments' version including number, purchasing date and your suggestions to us after the purchasing of the product.

We will attach great importance to any piece of advice from you, We will be very concerned about any detail of our products, We will make great efforts to provide better quality.

Notice: Our Company has the right to upgrade and improve the technical parameters of instruments, which may not be announced in advance. The pictures in the manual are only for reference and kind prevail.

- Features:

Rich Feature: Our Total Station is equipped with a wealth of measurement applications including data storage, parameter settings and etc. It's suitable for all kinds of professional measurements.

1. Absolute coded dial

With absolute digital dial, instruments can be measured directly when it powers on. The measured azimuth angle result will not be lost even when the instrument shut off.
2. powerful memory management

Large-capacity EMS memory, easy to manage the file system, serving to add, delete and transfer data

3. No prism ranging

The series Total Station with laser ranging No-Prism is capable of surveying for long distance, fast and precise measurements with various materials and different colors of objects (such as building walls, poles, wires, cliff wall, mountain, mud, stakes, etc.). For those which are hard or impossible to be reached, the application of Prism features can be a good measurement tasks.

4. special measurement procedure

The series total station is equipped with the basic surveying function as well as special measurement procedures, undertaking REM, offset measuring, stakeout, Resection, area measurement and calculation, road design etc. to meet the needs of professional measurement.
5. eyepiece changeable

The instruments' eyepiece can be changed, and equipped with a diagonal eyepiece, serving to observe zenith and high buildings

6. An optional laser plumb

The site features is easy to instruct and set up stations

NOTE:

1. Avoid look directly into the sun with the eyepiece when measuring. Recommended to use solar filter to reduce the impact
2. Avoid extreme temperature when storing equipment and sudden changes in temperature when using the instrument.
3. The instrument should be loaded in box placed in dry and ventilated place and prevented from shock, dust and moisture when it is not in use.
4. In order to get good accuracy, you should leave the instrument in the box if the instrument temperature has large difference between working and storing you may unpack the box and employ the instrument until the instrument reaches the temperature at the working field.
5. If the instrument is not used for a long time, the battery should be unloaded and stored separately and charged once a month to prolong battery life.
6. The instrument should be installed in box when it is transported. Extrusion, collision and violent vibration need to be carefully avoided during the transport process. The soft mat May be placed around the box on the long-distance transportation.
7. It is better to use high quality wooden foot stool to make sure the stability of measurement and improve its accuracy, when setting up the instrument.
8. Only use absorbent cotton or lens paper to wipe the instrument gently if exposed optical device need to be cleaned.
9. Use flannelette or hairbrush to clean the instrument after using. Do not electrify and start up after the device got wet in a rain. Using clean soft cloth to wipe it dry and put it at ventilated place for a period of time to make the instrument fully dry before using or packing.
10. Inspect instrument carefully and comprehensively to ensure its indicators, function, power supply, initial setting and correction parameters meet the requirements before operating.
11. If the function is abnormal, non-professional maintenance persons are not allowed to dismantle the device without authorization in case of any unnecessary damage.
12. The emitted light of the no-prism total station is laser, do not direct to eyes.

- Security Guide

Pay attention to the following safety matters when you use the laser ranging free of prism.

Warning:

Total station fit out laser level 3R/IIIa which is recognized by the loge, which is above:
the vertical locking screw saying: "3A laser product ". This product belongs to Class 3R level laser.According to the following standards IEC 60825-1: 2001Class 3R/IIIa laser product can reach five times of emission limits of the Class 2/ II in the wavelength between 400nm-700nm.

Warning :

Continuous stare into the laser beam is harmful.

Prevention:

Do not stare at laser beam or point to others. The reflected beams is the effective signal of the instrument. It's safety to observe by eyepiece.

Warning:

When the laser beam is irradiated reflected by prisms, plane mirrors, surface of metal and windows, it's dangerous to look straight into the reflected beams.

Prevention :

Don't stare at the reflected beams. When the laser is switched on (distance mode), do not obstruct optical path or stand near the prism. Target at a prism with total station telescope only.

Warning :

It's dangerous to use the Class 3R laser device improperly.

Prevention:

To avoid injury, each user must carry safety prevention measures and operate the instrument within the safety scope according to standard IEC60825-1: 2001).

The following is the explanation of the main part of the standard:
Class 3R level laser products are used outdoors and in construction (surveying with No-Prism).
A: Only trained and certified persons are allowed to install, adjust and operate the laser equipment.

B: Set up appropriate laser warning sign within the operating field
C: To prevent anyone from looking into the laser beam use an optical instrument to observe.

D: In order to prevent laser damage to persons, the laser beams should be blocked at the end of the working route, and also should be cut off when people work in the restricted area (harmful distance)where laser beams crossing are harmful.

E: The route of the laser beam must set to be higher or lower than the human eye.

F: Properly store and safe keep the laser products when they it is not used, unauthenticated personals are not allowed using it.

G: Do not point laser beams at surfaces such as plane mirror, metal surface, window, especially the surface of plane mirror and concave mirror.
Harmful Distance is the maximum distance from the starting point of the laser beams to where people are right safe. The built-in harmful distance of the Class 3R/ III a laser is 1000 m (3300 ft) and the laser intensity will reduce to that of Class 1 products (which does not harm eyes) if people is out of this range.

CONTENTS

CONTENTS 6

1. Name and function of each part 10
2. Name. 10
3. Keys Functions and information display 12
4. Preparation before measurement 13
5. Unpack and store instrument 13
6. Setting up the instrument 13
7. About the battery 15
8. Reflecting prism 16
9. Loading or unloading the base. 16
10. Adjust telescope objective and aiming target 16
11. Input Mode 17
7.1 Input characters 17
7.2 Delete characters 18
12. Point Search 19
8.1 Direct search 19
8.2 Wildcard search 22
13. Q-Survey 24
14. Notes in the distance measurement 24
15. EDM Setting 26
2.1 Set the mode of EDM 26
2.2 Atmosphere setting 28
2.3 Grid factor setting 31
2.4 EDM signal 32
16. Start measurement. 34
3.1 Set HA 34
3.2 Set Station and instrument height 37
3.3 Measurement 38
3.4 Code 39
17. Functions 41
18. Level 41
19. Offset 42
2.1 Distance Offset 42
2.2 Cylinder Offset 43
2.3 Angel Offset 45
20. NP/P Toggle 47
21. Height Transfer 47
22. Hidden Point 50
23. Free Coding 53
24. Laser Pointer 53
25. Light 53
26. Unit Setting 53
27. Main Setting 54
28. EDM Tracking 55
29. Applications 56
30. Setting the Job 56
1.1 Create a new Job 56
1.2 Select an Existing Job from Memory 58
31. Setting the Station 59
2.1 Select the coordinate from memory [Find] 59
2.2 Select the Fix Point in the Memory [List] 61
2.3 Input the coordinates manually 63
32. Setting the Orientation 64
3.1 Manual input orientation 64
3.2 Set orientation with coordinates 66
33. Starting the Applications 67
34. Surveying 68
5.1 Individual Point 70
5.2 Data 71
35. Stakeout. 73
6.1 Set Stakeout Point 73
6.2 Polar Stakeout Mode 77
6.3 Orthogonal to Station Stakeout Mode 80
6.4 Cartesian Stakeout Mode 83
6.5 Polar. 86
36. Resection 89
37. Tie Distance 92
8.1 Polygonal 92
8.2 Radial 95
38. Area \& Volume 98
39. Remote Height 100
10.1 Prism High Unknown 103
40. COGO 104
11.1 Traverse 104
11.2 Inverse 108
11.3 Bearing-Bearing Intersection 110
11.4 Bearing-Distance Intersection 113
11.5 Distance-Distance Intersection 115
11.6 Line-Line Intersection. 119
11.7 Distance-Offset 121
11.8 Set Point 122
11.9 Extension 125
41. Road 127
12.1 Road Manage 127
12.2 Road Stakeout. 129
12.3 Result.Setting out 130
12.4 Transfer 130
42. Stakeout Reference Element 131
13.1 RefLine 131
13.2 RefArc. 139
13.3 RefSurface. 149
43. File manage 151
44. Job. 151
1.1 Select a Job. 151
1.2 New a Job 152
1.3 Delete a job 154
45. Fix Pt. 155
2.1 Search Fix Pt 156
2.2 Add Fix Pt 156
2.3 Edit Fix Pt 158
2.4 Delete Fix Pt 159
46. Meas. Pt. 159
3.1 View the measurement data 160
3.2 Delete measurement data 161
47. Code 162
4.1 Input Code 162
4.2 View Code 163
4.3 Delete Code 165
48. Memory Statistics. 166
49. Data Transfer 167
50. Data Import 167
51. Data Export 169
52. Instrument Setting. 172
53. General Setting 172
54. EDM Setting 176
55. Adjust and Tools. 177
56. Adjust 177
1.1 View adjust parameters 178
1.2 Adjust Index Error 179
1.3 Adjust Tilt X 179
1.4 Adjust Tilt Y 181
1.5 Adjust Tilt Zero 183
1.6 Instrument constant setting 184
1.7 Factory setting 184
57. System information 185
2.1 View System Information 185
2.2 Set System Date 185
2.3 Set System Time 185
2.4 Firmware Upgrade 186
58. Checkout and calibration 189
3.1 Tube level 189
3.2 Circular level 189
3.3 Telescope reticle 190
3.4 The verticality of collimation axis and horizontal axis(2C) 191
3.5 Vertical plate index zero automatic compensation 192
3.6 Vertical collimation error (I Angle) and vertical collimation zero value setting 192
3.7 Plummet. 193
3.8 Instrument additive constant (K) 195
3.9 The parallelism of collimation axis and photoelectricity axis 195
3.10 No prism ranging 196
59. Technical parameters 197
60. Attachment B File format introduction 199

1. Name and function of each part

1. Name

2. Keys Functions and information display

Key	Function
(1)	Power ON/ Power OFF.
MEAS	Trigger key, depends on setting, maybe disting\& save, disting or none.
ESC	Cancel or exit.
ENT	Confirm or commit editing.
箐	Page turning
FNC	Hot key to enter function menu in measuring interface.
81	User defined function key 1.
82	User defined function key 2
Δ	Move cursor up or goto previous.
∇	Move cursor down or goto next.
4	Move cursor left or goto left.
\checkmark	Move cursor right or goto right.
$\begin{array}{lc} \hline \text { STU } & \text { GHI } \\ 1 \sim & 9 \\ \hline \end{array}$	Entering letters A-Z.
$0 \sim 9$	Entering number or choose menu item.
F1 ~ F4	Soft keys to choose screen bottom function.

2. Preparation before measurement

1. Unpack and store instrument

- Unpack

Put down the box gently and turn up the cover then turn on the lock, open the cover and take out the instrument.

- Deposit

Cover up the telescope mirror and make the vertical motion of alidade upwards then put the instrument horizontally (keep the objective upwards) into box. Then screw vertical motion gently. Cover up the box cover and lock the box. Loose horizontal and vertical axis as much as possible to reduce the shock damage to instrument.

2. Setting up the instrument

Install the instrument onto the tripod gently, then level and center the instrument to ensure the accuracy of the measurement result.

- Reference for operation:

1. Centering and levelling
1) Set up the tripod
(1) Position tripod legs so that the plummet is aimed to the ground mark point. Turn the focusing ring of the optical plummet to focus;
(2) Make sure that the center of the tripod top is right above the station;
(3) Stamp the tripod on the ground with your feet.
2) Install the instrument onto the tripod

Mount the instrument on the tripod head. Support it with one hand, and tighten the centering screw on the bottom of the unit to make sure it is secured to the tripod.
3) Using the circular level to level the instrument coarsely
(1) Twist and adjust the two leveling screw A and B on the bottom of the instrument until the bubbles of the circular level moves to the line perpendicular to the center line the screw A and B ;
(2) Twist and adjust leveling screw C to move the bubble to the center of the circular level.

4) Using the plate level to level the instrument precisely
(1) Loosen the horizontal locking screw and turn the instrument around until the plate level is perpendicular to a line shaped with screws A and B. Adjust the screws A and B to make the bubble in the center of the level;

(2) Turn the instrument approximately 90° and adjust screw C until the bubble in the center of the level;

(3) Turn around the instrument 90° again. Repeat above steps until the bubble remains in the center of the plate level even though the instrument is rotated to any position.

2. Centering by centering tool (optional or laser)

1) Set up a tripod

Extend a tripod to the appropriate height make sure the legs are spaced at equal intervals and the head is approximately level .Set the tripod so that the head is positioned over the surveying point. Brace tripod on the ground and keep one leg fixed.
2) Set up instrument and spotting

Put instruments on a tripod carefully, and tighten the center connection screw. Adjust the optical centering tool to make reticule clear (open instrument and laser centering if it's a laser centering tool).Handle another two unfixed legs, and adjust their position through the observation of the optical plummet. Make the three legs of the tripod fixed on the ground when the optical plummet is aligned to the station approximately .Adjust three feet screws of total station and keep the optical centering tool (or laser centering) aiming at the station accurately.
3) Leveling instrument roughly by circular level
(Same as The section above that discusses centering and leveling with plumb bob)
4) Leveling instrument accurately by tubular level
(Same as The section above that discusses centering and leveling with plumb bob)
5) Centering and leveling accurately

Loosen center connection screw slightly and move instrument horizontally(Don't rotate instrument) through observation to optical plummet, making the instrument aim at station accurately. Tighten the center connection screw and leveling instrument accurately again.

This operation should be repeated till the plumb aims at station accurately.

3. About the battery

- Mounting the battery

\mathcal{i} Fully charge the battery before measurement.
\hbar Cut off the power before removing the battery.
Step mounting the battery

1. Insert the battery to the instrument.
2. Press the top of the battery until you hear a click sound.
-Step Remove battery
3. Press the button downward.
4. Remove the battery by pulling it toward you.

- Battery information
- Power is adequate, operating available.
- -The battery can be used for 4 hours when this symbol first appears. If you cannot master the consumed time, you should prepare a spare battery or charge the battery before using.
- - End of the operation as soon as possible and replace the battery and charge if running out of power.
© - - It takes several minutes for the instrument to shut down when this symbol first appears. The battery has few power now and should be replaced an recharged.

Notice:

(1) The operating time of battery depends on environmental conditions such as ambient temperature, time and times of charging and so on the battery is suggested to be prepared or charged ahead before operation to keep it safety.
(2) The battery symbol only indicates power capability undercurrent measurement mode. The remained capacity of the battery shown under current mode does not
guarantee its capacity under other modes .Because consumption of power in distance measurement mode is more than that in angle measurement mode ,the instrument may end ranging sometimes due to insufficient capacity of battery (when switching between modes).

Notice in charging:

- Though overcharging protection is installed in the instrument, please plug off the battery immediately after finishing charging.
- Charging range from $0^{\circ} \sim \pm 45^{\circ} \mathrm{C}$. Abnormal responds of instrument occurs over this range.
- Rechargeable for300-500 times, it may shorten Service time of the battery completely.
- Charge the battery once a month no matter if it is used to prolong its longevity.

4. Reflecting prism

When measuring distance with prism mode, a reflecting prism must be set at the target site. You can connect the prism to the base, and then connect the base onto the tripod .you can also set the prism onto the centering rod. There are single-prism group and three prism group available on the market, so you can select them according to your requirements.

5. Loading or unloading the base

- Loading

Put the three fixed feet in the corresponding bases, make the instrument in a triangular base, clockwise lock the button by 180° to lock the base, and then fix screw with a screwdriver to screw it out at a fixed lock knob.

- Unloading

If necessary, the triangle base can be removed from the instrument (including the same base of reflection prism base connector) by loosening the lock knob base fixed screw with a screwdriver, and anticlockwise locking button about 180°, then separate the instrument from base.

6. Adjust telescope objective and aiming target

Aiming method (reference)

(1) Rotate the telescope and point it to the bright sky and focus reticule clearly (by rotating eyepiece in own direction and focusing reticule slowly).
(2) Aim at the target with the crosswire in optical sight, and keep an appropriate distance when aiming (about 200mm).
(3) Use telescope focus screw to make target clear.

It means that focus or eyepiece diopter is not adjusted when there is a parallax with eye moving up and down, thus focus carefully and adjust eyepiece to reduce parallax.

7. Input Mode

Total station keyboard includes alpha/digit keys. User can input letters and numbers directly.

- Input box:

Each digit key defines 3 letters and 1 number. Depends on the properties of input box, input process varies.
Number input box:
In number input box, user can only input numbers, include "1-9",."., "-+". Number will appear in box when user presses the key.
Text input box:
In text input box, user can input numbers and letters. Repeat pressing same key to get proper letter, such as A->B->C->7.

When right-bottom of screen display icon \quad A , user can input number/letter; when display icon ${ }^{1} 1$, user can only input number. User can press soft-key [F4] to switch input mode between Number and Text when input box been active.

- Letters:

Letters that total station can input includes "A-Z/\$\%_@\&*?!+-.". When wildcard queries, you need to use the "*" character and press the \pm key twice in the character input mode of the total station,.
$>$ Arrow key $\leftrightarrows, \rightarrow$ move inputting cursor.
$>$ Pressing ENT enters editing; pressing ENT confirms input after editing.
> When editing distance, angle, temperature and pressure values that contain unit format, input box's text will convert into text without unit format. Such as angle $29^{\circ} 32^{\prime} 56^{\prime \prime}$ transforms into 29.3256; Distance 115.321 m transforms into 115.321. When finish editing, the text will automatic convert back.

7.1 Input characters

Each digit key defines 3 letters and 1 number. In text input mode, each time pressing the key, one character appears at cursor position. Number appears when pressing 4 times.

Example: input 123ABV2

Steps	Key	Display
(1) Pressing key to start inputting. Right-bottom screen displaying icon ${ }^{-1}$ means in number input mode.		
(2) Press key 1 , key 2 , key 3 . Then press key F4, active text input mode. Icon ${ }^{-A}$ should appear in right bottom screen.	[1],[2],[3],[F4]	
(3) Press key 7, display letter ' A ', wait about half second, press key 7 twice, display letter ' B ', then press key 2 , display letter ' V ', wait about half a second, press key 2 four times, display number ' 2 '. Then finished text '123ABV2' input.	[A],[B],[V],[2]	
(4) Press key ENT to finish editing, cursor will move down to next input box.	[ENT]	

7.2 Delete characters

Delete or clear input characters.

Steps	Key	Display
(1) Press key to move cursor to right side of the character that to be deleted.	\leftarrow	
(2) Press key F1(Delete).	[F1]	
(3) Press key ENT to confirm input. Press Key ESC to undo changes.	$\begin{aligned} & \text { [ENT] / } \\ & \text { [ESC] } \end{aligned}$	

8. Point Search

Point search is a function used by applications to find measured or fixed points in the jobs.。

Point search is limited to a particular job.
If several points meet the search criteria, then the results are ordered according to the date.

8.1 Direct search

By entering an actual point number (for example 'A1'), and pressing key SEARCH, all points within the selected job and with the corresponding point number are found.

Here is an example for searching fix point in function 'Set STA'.

Steps	Key	Display	
(1) Choosing 'Survey' in application menu, then choose function 'Set STA'. Entering point number, for example 'A1', pressing ENT to finish input, then pressing F1 to search.	[F1]	[Set STA]	
		Input STA PT!	
		Station	
		Find List	Coord.
(2) In searching result window,	$\uparrow \downarrow$ [F4]/	[Find Pt.]	1/5
		Al	Station
using arrow key $\uparrow \downarrow$ to move		A1	Station
using arrow key $\uparrow \downarrow$ to move		A1	Meas. PT
cursor to select point number.	[ENT]	A1	Meas. PT
Press key F4 or ENT to confirm selecting.			
		View Coord.	Job OK

Soft keys introduction:
[View] Show the coordinate of selected point.

(3) Using arrow key \square to move cursor and select point number. Press key F1 to show the coordinate details of selected point.	[F1]	[View Coord.]	
		Job :	DEFAULT
		Pt.	A1
			0.000 m
			0.000 m
		Z	$\begin{array}{r} 0.000 \mathrm{~m} \\ 2015.05 .15 \end{array}$
		Date	2015.05. 15
			K
(4) Press ESC or F4 back to previous screen.	[ESC] [F4]	[Find Pt.]	1/5
		A1	Station
		A1	Station
		A1	Meas. PT
		A1	Meas. PT
		A1	Meas. PT
		View Coord.	Job OK

[Coord.] Input point manually.

[Job]Choose another job's points.

(3) If required point not exists in the job, user can choose another job's points.	[F3]	[Find Pt.]		
		Job $\quad \vdots$ Pt.	DEFAULT	
		Select job or input coord. !		
		Job Zero	Coord.	Find
(4) Entering job list by pressing key F1, choose the particular job and press ENT or F4 to commit choosing.	[F1] [F4] [ENT]	[Select Job]		
		$\begin{aligned} & \text { DEFAULT } \\ & \text { JOB1 } \\ & \text { JOB2 } \\ & \text { JOB3 } \end{aligned}$	*	
		View New		OK

[OK] Commit selected point.

8.2 Wildcard search

The wildcard search is indicated by a "*". The asterisk is a place holder for any following sequence of characters. Wildcards should be used if the point number is not fully known, or to search for a batch of points.

Examples:

* All points are found.

A All points with exactly the point number "A" are found.
A* All points containing "A" are found, for example, $A 1, A 2,1 A$.
Steps: (For example "*")

Steps	Key	Display			
	[F1]	[Set STA]			
		Input STA PT!			
application menu, then choose function 'Set STA'. Entering "*",		Station			
		Find	List	Coord.	

3. Q-Survey

1. Notes in the distance measurement

After the placement of instrument and turned on the power, total station is ready, can start measuring.

In measurement display, user can call the function of set key, the function keys and hotkey.

The show is an example. Localized version may be slightly different.
The example of Q-Survey show:

[Q-Survey] 1/3] $1 / 3$		
Pt.	:	PT01V	
T. H.	:	1.500 m	
Code	:		
HA		$13^{\circ} 29^{\prime} 59^{\prime \prime}$	
VA		$90^{\circ} 59^{\prime} 23^{\prime \prime}$	
$\underline{4}$: - A		
ALL	DIST	T REC	\downarrow
ALL	Code	EDM	\downarrow
Station	Zero	SetHA	k-

F1-F4 Start the corresponding functions

Notes:

Measurements to strongly reflecting targets such as to traffic lights in Reflector EDM mode without prism should be avoided. The measured distances may be wrong or inaccurate.

When a distance measurement is triggered, the EDM measures to the object which is in the beam path at that moment.

If e.g. people, cars, animals, swaying branches, etc. cross the laser beam while a measurement is being taken, a fraction of the laser beam is reflected and may lead to incorrect distance values.

Avoid interrupting the measuring beam while taking reflector less measurements or measurements using reflective foils.
> No Prism Ranging

- Ensure that laser beam is not reflected by any object with high reflectivity and close to the light path.
- When start the distance measurement, EDM will measure distance for the object
in the light path. If there are temporary obstacles in the light path (such as by car, or the heavy rain, snow, or filled with fog), the distance measured by EDM is the distance to the nearest obstacle.
- When a long distance measurement, laser beam deviation of collimation line will affect the accuracy of measurement. This is because the divergence of the laser beam reflection point may not be with the crosshair sighting points coincide. It is recommended that the user accurately adjust to ensure that is consistent with laser beam collimation. (Please refer to " 20.10 NO Prism Ranging " in the Chapter 9)
- Don't use two instruments to measure the same target at the same time .
> Red light cooperates with reflective pieces to measure distance Laser can also be used to measure distance for reflective pieces. To guarantee the accuracy of measurement, the laser beam is perpendicular to the reflector plate, and through accurate adjustment. (Please refer to " 3.10 NO Prism Ranging" in the Chapter 9)

Ensure proper additive constant of different reflection prism.

2. EDM Setting

2.1 Set the mode of EDM

Select the mode of distance measurement, there are 6 modes : Single,Repeat,Tracking,3 Times,4 Times, 5 Times.

Steps	Key	Display
(1) Press $[F 4](\downarrow)$ and show the second soft key in the Q-Surveying. Press [F3] to enter the interface of EDM Setting.	$\begin{aligned} & {[F 4]} \\ & {[F 3]} \end{aligned}$	
(2) When the cursor is in EDM mode option, Press the direction key of $\longleftrightarrow \rightarrow$ to select the mode of measurement. Each time you press \leftarrow or \rightarrow, the mode of measurement is switched.		[EDV Setting] EDM Mode : Tracking Reflector: Non-Prism P.C. \square
(3) After finishing setting, press [F3](OK) to return the function of Q-Surveying. If you want to cancel the settings, press [ESC] to ignore the changes.	[F3]	Setting saved!

Set the reflector type

Our series total station can be set up for the red laser (RL) range and invisible infrared light (IR) range and the total station has three reflectors to be selected, which are prism, non-prism (NP) and reflect board (Sheet). You can set by job,but the prism used should be matched with prism constants.
$>$ About the parameters of various reflectors in distance measurement, please
refer to "Technical Parameters".

Steps	Key	Display
(1) After entering to the interface of EDM Setting, using the direction of \downarrow to move the cursor to the setting item of Reflector.	\downarrow	[EDV Setting] EDM Mode : Tracking Reflector: Non-Prism P.C. 0 mm
(2) Press \square to select the types of reflector. Each time you press \leftarrow or \rightarrow, the type of reflector is switched.		[EDV Setting] EDM Mode : Tracking 1 Reflector: Non-Prism 1 P. C. . 0 mm
(3) After finished setting, press [F3] (OK) to return the function of Q -Surveying. If you want to cancel the settings, press [ESC] to ignore the changes.	[F3]	

Set up the Reflecting Prism Constant.

As a prism is selected as a reflector, a prism constant should be set before any measurement. If the constant is entered and set, it is saved and will not be erased after switching off the instrument.

Example: Prism Constant is -30 mm

Steps	Key	Display
(1) After entering to the interface of EDM Setting, using the direction of \downarrow to move the cursor to the setting item of P.C.	\downarrow	
(2) Enter the prism constant value and press the key of [ENT]. $※^{1} ※^{2} ※^{3}$	[ENT]	EDM Mode : Single Reflector: Non-Prism P.C. : $\quad-30 \mathrm{~mm}$
(3) After finished setting, press [F3](OK) to return the function of Q-Surveying. If you want to cancel the settings, press [ESC] to ignore the changes.	[F3]	
※ ${ }^{1}$: Prism constant you enter is effective only when the reflector mode is Prism. $※^{2}$: The range of Prism constant value: $-99 \mathrm{~mm} \sim+99 \mathrm{~mm}$.		

2.2 Atmosphere setting

Refraction:

When measuring horizontal distance and elevation, our instrument corrects the atmospheric refraction and the earth curvature automatically.

The instrument supports of atmospheric refraction coefficient have three option, they are $0.00,0.14$, and 0.20 .
Note: The refraction of instrument has been set for $\mathrm{K}=0.00$ when left factory .It also can be set to other values

Steps	Key	Display
(1) After entering to the interface of EDM Setting, press [F1] (Atoms) to enter the interface of Atmospheric Data.	[F1]	
(2) Interface displays the current setting, using the direction of \square to move the cursor to the setting item of Refraction. Press \square to select the value of refraction. Each time you press \square \square , the value of refraction is switched.	$\begin{aligned} & \boxed{\downarrow} \\ & + \\ & \leftrightarrow \end{aligned}$	
(3) After finished setting, press [F4] (OK) to save settings and back to previous menu. If you want to cancel the settings, press [ESC] to ignore the changes	[F4]	

Atmospheric Correction:

When measuring distance, the measured value will be influenced by the atmosphere.

In order to reduce the influence, a atmospheric correction parameter is needed.
Correction value associated with the pressure and temperature in air. Calculated as follows:

PPM $=277.8-\left(0.2900^{*}\right.$ the air pressure $\left.(\mathrm{hPa})\right) /\left(1+0.00366^{*}\right.$ temperature $\left.\left({ }^{\circ} \mathrm{C}\right)\right)$
If the air pressure unit is mmHg , Make a conversion according to the formula: $1 \mathrm{hPa}=0.75 \mathrm{~mm} \mathrm{Hg}$
> Standard meteorological conditions (atmospheric correction value $=0$): press: 1013 hPa
temperature: $20^{\circ} \mathrm{C}$
If the atmospheric correction is not required, please set PPM to zero.

Steps	Key	Display
(1) After entering to the interface of EDM Setting. Press [F1] (Atoms) to enter the interface of Atmospheric Data.	[F1]	
(2) Interface displays the current settings.	\downarrow	[Atomspheric Data]
(3) Input the value of temperature. example: Enter $26^{\circ} \mathrm{C}$ and press the key of [ENT]. The cursor moves to the setting item of Press.	[ENT]	[Atomspheric Data]
(4) Input the value of atmospheric pressure. example: Enter 1020 hPa and press the key of[ENT].Program calculates the value of PPM and the cursor moves to the setting item of PPM. $※^{1} ※^{2} ※^{3} ※^{4}$	[ENT]	

2.3 Grid factor setting

When calculating the coordinates, the horizontal distance measured must multiply by the scale factor.

Computation formula

1. Altitude factor $=R /(R+E L E V)$
R : The average radius of earth
ELEV: mean sea level altitude
2.Scale factor

Scale factor: Scale factor of the station
3.Grid factor

Grid factor=altitude factor \times scale factor

Distance calculation

1. Grid distance
$H D g=H D \times$ grid factor
HDg: Grid distance
HD: Ground distance
2. Ground distance
$H D=H D g /($ Grid factor)

Note:

1. The enter range of the scale factor: $0.99 \sim 1.01$,the default value is 1.0 .
2. The enter range of the average height above sea level: -9999.9999~9999.9999. The average altitude retained after the decimal point one, the default value is 0 .

Steps	Key	Display
(1) After entering to the interface of EDM Setting, press the key of [F4] to enter the second page of soft key, then press the key of [F1](Grid) to set the Grid Scale.	$\begin{aligned} & {[\mathrm{F} 4]} \\ & {[\mathrm{F} 1]} \end{aligned}$	
(2) Interface displays the current setting. Enter the values of Scale and Altitude then press the key of [ENT].Program calculates the Grid Scale and displays it in the interface. If you want to set all enter area to 0 ,you can set the key of [F1] (Reset).	[ENT]	
(3) After finished setting, press [F4](OK) to save settings and back to previous menu. Then press the key of [F3](OK) to save the setting of EDM and back to the function of measurement.	[F4]	[EDV Setting] EDM Mode : Single Reflector: Non-Prism P.C. . 0 mm

2.4 EDM signal

The function of signal is to display the intensity of signal received by total station. If the target is hard to be found or can't see, using the function can achieve the best sighting accuracy.

Steps	Key	Display
(1) After entering to the interface of EDM Setting, press the key of [F4] to enter the second page of soft key, then press the key of [F2](Signal) to enter the function of Signal intensity.	$\begin{aligned} & {[\mathrm{F} 4]} \\ & + \\ & {[\mathrm{F} 2]} \end{aligned}$	
(2) Using the bar chart and value of number to show the intensity of signal received by total station in the screen. As shown in the picture on the right.		[EDV Signal] Strenght : $\quad 50 \%$
(3) Press [F1] or [ESC] to back to the menu of EDM setting.	[F1] or [ESC]	[EDV Setting] EDM Mode : Single Reflector: Non-Prism P.C. : $\quad 0 \mathrm{~mm}$

3. Start measurement

Q-Survey has 3 pages menu, including all measuring functions commonly used, such as angle measurement, distance measurement and coordinate measurement.
As shown below:

[Q-Survey	3/		
Pt.			A1
T. H.			
Code			
N		9. 8	II
E	:	2. 36	m
Z	.	-0. 2	
Station	Zero	SetHA	k

3.1 Set HA

You can set the horizontal angle as 0 or set it as wanted angle.
Set horizontal angle to 0 .

Set HA.

Steps	Key	Display
(1) Aim at the target which used to orient. Press [F4] twice to enter third pages soft key.	$\begin{aligned} & \text { [F4] } \\ & + \\ & {[F 4]} \end{aligned}$	
(2) Press $[F 3]($ SetHA $)$ to enter the interface of SetHA. Screen displays the current value of HA. A: If want the current value of HA as the orientation angle, press [F4](OK) or press [ESC] to go back.	[F3] [F4]	

3.2 Set Station and instrument height

After set the coordinate of station (the site of instrument) relatives to the origin, the instrument can calculate the coordinate of the location to your position (the site of prism).

You can set station and the instrument height conveniently in the Q-Survey.

Steps	Key	Display
(1) Aim at the target which used to orient. Press [F4] twice to enter third pages soft key.	$\begin{aligned} & {[F 4]} \\ & + \\ & {[F 4]} \\ & + \\ & {[F 2]} \end{aligned}$	
(2) Press [F1] (Station) to enter the interface of Enter STA. Enter the name of station, the instrument height and coordinates. After entering each item, move the cursor to the next edit text.	[F1]	
(3) After finished entering, press [F4] (OK) to save the data of station and back to the function of Q-Survey.	[F4]	

3.3 Measurement

After all settings have been finished, you can start to measure. There are 3 pages to display the result of measurement, including all measurement data and you can press [PAGE] to view.

Steps	Key	Display
(1) Input the name of point and instrument height. Move the cursor to the next edit text after entering each item. You can enter Code when necessary.	[ENT] [ENT]	
(2) Aim at the center of prism, press [F1](ALL) [F2](DIST)+[F3](REC) to start to measure and record the measurement data. The measurement data including angle data, distance data and coordinate data. You can press [PAGE] to view.	[F1] or [F2] [F3]	
(3) After finishing measuring a point, program makes the number of point add 1 automatically, aim at the center of prism and repeat the above steps to start next point measurement.		

3.4 Code

The code contains the information about the recording points, in the process of post-processing, with the help of encoding function, you can process conveniently according to the specific group. The function of "File Manager" also contains the information of code.

Simple Operation of Code

1. Move the cursor to the line of Code.
2. Enter the name of Code.
3. Press the key of [ALL] to start the distance measurement and record the data of code and measurement at the same time. If the name of code already exists in the code library, it will extract the information of code in the code library to record at the same time.

Steps	Key	Display
(1) Move the cursor to the line of Code.	\downarrow	
(2) Enter code and press [ENT] to make sure. The entered code here will not be added to the code library.	Input code [ENT]	
(3) Press [F1] to start to measure, record the code and the date of measurement to job at the same time. $※^{1}$		

$※^{1}$:The order to save code and measurement data is set in the "Setting" function. The set items of code record are Before REC and After REC.

Before REC: Record code data before recording the actual measurement data.
After REC: Record code data following after the actual measurement data.

Soft key of Code

After starting the function of soft key (Code), Screen displays the following:

[View Cod			
Code		CODEA	
Note	:		
Info 1	:	AAAAAA	
Info 2		BBBBBB	
Info 3		CCCCCC	
Info 4		DDDDDD	
Find	New	REC	0K

GSI-the introduction of code properties:
Code: The name of code
Note: The additional note
Info1: The editable information of other contents
Info8: Other information

The introduction of soft key:
[Find]: Use the name of code or wildcard to find the needed code.
[New]: New a piece of editable information of code and use it.
[REC]: Record the current code data to the job and the code data not with any measurement point binding at this time.
[OK]: Select the current code and use it.

Using the soft key of [Code] can select the code in the code library directly, it will back to the interface of Q-survey after selecting, the code in the edit text of Code is the selected code.

4. Functions

Bring the total station's common functions and settings together, they can be used in the process of measurement conveniently. In the function of Q-Survey which in the Main menu or other interface of measurement in the program, you can press [FNC] to enter the menu of Function

The menu of Function has 4 pages, you can press 【PAGE】 to view. The specific introduction as follows:

[Function]	3/3
F1 Unit Setting	(9)
F2 Main Setting	(01)
F3 EDM Tracking	(02)
F1	F2

You can open Function menu to select the function you want to use, you can also define the function which on the Function menu to the key of [USER1] or [USER2], then press the key of [USER1] or [USER2] to use these functions.

1. Level

When the compensator is on, Compensator can compensate to the tilt caused by the instrument is not level. Manually level the instrument with the tribrach screws to make the compensation value of compensator tend to 0 , by doing these can make the instrument tend to level. When the instrument is level, the laser plummet is in the direction vertical, the place of laser points is the place of instrument station.

- Press [On] to open the compensator and press [Off] to close the compensator.
- Press [X Only] to open the compensator of X direction.
- Press $[\mathbf{A}][\boldsymbol{\nabla}$] to adjust the laser plummet brightness.
- Press [OK] to close the laser plummet and exit.

2. Offset

The Offset is used to measure the points which are not intervisible, or intervisibility but can not set up prism in the Station.

Offset contains Dist. Offset and two subprograms, the two subprograms are Cylinder Offset and Angle Offset.

2.1 Distance Offset

Using the external tools to measure the Offset values of the target point p2 and measurement point p1 along the line of station point and measurement point, the Offset values are Trav.OFS, LengthOFS and HeighOFS. Combining the information of measuring point (p 1) can calculate the distance of station point (p 0) to target point (p2), can also calculate the angel and coordinate.

When the measurement point is set on the left of target point or the right of target point, you should make the angle that between line of measurement point and target point and the line of measurement and station point about equals 90°.

When the offset point is set on the front of target point or on the back of target point, you should make it on the line of station point and target point.

2.2 Cylinder Offset

As for the not intervisible cylinders, you can measure the angles of station point with cylinder in Hz Left and Hz Right and the shortest distance of station point to cylinder firstly. Then calculate the coordinate of cylinder center and radius of cylinder through the geometric relationships. The shortest distance between station
point and cylinder is in the bisector of angle of station point with cylinder in Hz Left and Hz Right. Turning the instrument to make the collimation axis in the bisector of angle that station point with cylinder in Hz Left and Hz Right, thus can measure the distance between cylinder and station.

Steps	Key	Display
(1) In the program of Q-Survey, press [FNC] to enter the menu of Function, then pressing [F2] to enter the program of Offset.	[F2]	[Function] $1 / 3$ - F1 Level (1) F2 Offset (2) F3 NP/P (3) F4 HT. Transfer F1 F2 F3
(2) Press [F2] to enter the subprogram of Cylinder Offset.	[F2]	
(3) Aim at the left edge of cylinder, press [F1] to make sure the angel of Hz Left, turn the instrument to aim at the right edge of cylinder and press [F2] to make sure the angle of Hz Right.	[F1]+[F2]	
(4) Turn the instrument to make $\triangle H z=0$, if use the prism, please input the thickness of prism in the edit text of PrismOFS, if don't use the prism, the default value is 0 in the edit of PrismOFS, then press [F3] to measure the shortest distance of the instrument to cylinder	$\begin{gathered} {[F 3]} \\ \text { or } \\ {[F 4]+} \\ {[F 1]+[F 2]} \end{gathered}$	

and enter the interface of Cylinder Offset-Result.	
(5) Display the result of cylinder offset.	$[$ Cylinder Offset-Result] Pt \vdots 1 Note \vdots 12.215 m N \vdots 25.325 m E \vdots 0.000 m Z \vdots 8.125 m Radius \vdots

2.3 Angel Offset

PO Instrument station
P Measured point
C Target point
$\alpha 1$ The HA of the point P
$\alpha 2$ The HA of the point C

Angle Offset is used to measure the points which are intervisible but have no reflector and can't set up the prism. The basic principle is making the target point and measurement point in the concentric circles whose center is station point, then measurement the position information of station point and measurement point and the angle offset of station to target point, thus can calculate the coordinate of target point.

Set the measurement point P in the place where is as far as possible to close the left or right of target point C, and make the distance between measurement point P and station point A and the distance between station point A and target point C are approximately equal.

Steps	Key	Display			
(1) In the program of Q-Survey, press [FNC] to enter the menu of Function, then pressing [F2] to enter the program of Offset.	[F2]	[Func			\checkmark
					(1)
					(2)
					(3)
			Tran		(4)
		F1	F2	F3	F4

3. NP/P Toggle

Switch the mode of reflector quickly. (P is the mode of Prism and NP is the mode of Non-Prism)

Open the first page of Function Menu and press [F3] to switch the mode of reflector.

4. Height Transfer

The functions of HT. Transfer as follows: Using the measurement data of target point, the fixpoints, fix measurement points and so on to calculate the height of current station point and set the height of station again. You can receive the coordinate of target point by calling the points in the file or through the keyboard to input, you can observe 5 fixpoints' height at most and to calculate.

The principle of Height Transfer:

5. Hidden Point

The function of Hidden Point is using a special hidden point measuring rod to measure the points which are not intervisible.

The length of measuring rod is known, by measuring the position information of prism 1 and prism 2 in the measuring rod and using mathematical methods to calculate the coordinate of hidden point on the other side of the measuring rod.

Steps	Key	Display
(1) In the program of Q-Survey, press [FNC] to enter the menu of Function, then pressing [PAGE] to open the second page of Function and then pressing [F1] to enter the function of hidden point measurement.	[F1]	[Function] $2 / 3$ F1 Hidden point F2 Free Coding F3 Laser (6) F4 F4 Light F1 F2
(2) In the interface of measuring the first prism point, pressing [F4] to enter the interface of Rod Length.	[F4]	
(3) Inputting the correct value of Rod length and pressing [F4] to back to measure the first prism point.	[F4]	

6. Free Coding

$$
\text { Please refer to "3. Q-Survey" } \rightarrow \text { " } 3 \text {. Start Measurement" } \rightarrow \text { "3.4 Code" }
$$

7. Laser Pointer

Open or close the laser fastly.

[Func			2/3 ${ }^{\text {¢ }}$		Laser pointer switched!
F1 Hidden point (5) F2 Free Coding (6) F3 Laser (7) F4 Light (8)					
				-	
				【F3】 ${ }^{\text {¢ }}$	
				\checkmark	
F1	F2	F3	F4		

8. Light

Turn on or off the light of instrument screen fastly.

[Function]	2/3
F1 Hidden point	(5)
F2 Free Coding	
F3 Laser	(6)
F4 Light	
F1	F2

Open the second page of Function Menu and press [F4] to turn on or off the Light.

9. Unit Setting

Set the common Unit fastly.

Open the third page of Function Menu and press [F1] to enter the interface of unit setting. After finishing setting the units in the interface of Unit Setting, press [F4](OK) to save the settings, press [F1](Reset)to restore all units to factory default.

10. Main Setting

Open the settings about instrument's hardware, the spe cific items as follows:

As for the setting of specific items, please refer to "General Setting".

11. EDM Tracking

Open or close the mode of EDM Tracking fastly.

Open the third page of Function Menu, press [F3] to open or close the mode of EDM tracking.

5. Applications

Prepare setting before measuring:
Before starting the application, there are some preparations needed to set up. The Pre-Settings screen will be shown after the user selects an application. User can select and set the content of the Pre-Settings menu successively.
[Surveying]

[*] F1	Set Job	(1)
[*] F2	Set STA	(2)
[] F3	Set B. S.	(3)
F4	Start	
F1	F2	F3

[*]: Setting has been done.
[]: Setting has not been done.
The details of every setting are as follows.

1. Setting the Job

The measured data and fix data are saved in the jobs which are shown as child directories. The job contains different types of data, such as fix points, measured points, station points, codes, etc. The data in the job can be read, edited and deleted.

1.1 Create a new Job

Steps	Key			

1.2 Select an Existing Job from Memory

If there is any job existing in the memory, user can select this job and set it as the current job.

Steps	Key	Display
(1) Press [F1] in the Pre-Settings screen. Then enter the Set Job function.	[F1]	SSurveying] [*] F1 Set Job [*] F2 Set STA [] F3 (2) F4 B. S. (3) F4 Start (4) F1 F2 F3
(2) Press [F1] (List) to enter Job list screen.	[F1]	
(3) All the existing jobs, including that stored on SD Card and will be shown as a list. The current job is marked with a *. Select the target job through Up and Down key and then press [F4](OK) to confirm the selection. The selected job is set as current job.		[Job list] JOB1 JOB2 JOB3 JOB4 [SD] JOB5 JOB6 Delete New View OK
(5) Back to Pre-Setting screen. The completed setting item is marked with *.	[F4]	
		F1 10 F2 1 F3

Note: Don't pull out the SD Card when it is in operating state, otherwise it will cause the SD Card's data loss or damage.
$>$ All measured data are stored in the current job.
> If start the application without setting the job, press ALL key or press REC key in the Q-Surveying screen, the instrument system will create a job which named DEFAULT automatically.

2. Setting the Station

Every target coordinate's calculation is related to the position of the station. The station coordinate can be input manually or selected from the instrument memory.

2.1 Select the coordinate from memory [Find]

Steps:
1, Select the coordinate from memory.
2, Input instrument height.
3, [OK] Set station.

2.2 Select the Fix Point in the Memory [List]

User can select the fix point in the memory's jobs to set station without inputting the point name.

Steps	Key	Display
(2) Press [F2](List) in the [Set STA] screen.	[F2]	[Set STA]
		Input STA PT! Station $: \square$
		Find List Coord.

2.3 Input the coordinates manually.

Steps:

1. Press [Coord.], enter input coordinate screen.
2. Input the point name and coordinates.
3. [OK] Save the station coordinates. And then input the instrument height.

Steps	Key	Display
(2) Press [F3](Coord.) in the [Set STA] screen.	[F3]	[Set STA] Input STA PT! Station : \square Find
(3) Input the point name and the point's coordinates. After inputting one item, the curser will move to next input item.	Input point name and coordinate [ENT]	
(4) Press $[F 4](O K)$ to save the coordinates of this point.	[F4]	

3. Setting the Orientation

The orientation can be input manually or determined from points that are either measured or selected from the memory.

3.1 Manual input orientation

Steps:

1. Press $[F 1]$ and enter manual input screen.
2. Input the azimuth, prism height and point name.
3. Press $[\mathrm{F} 1](\mathrm{ALL})$ to start measuring and set the orientation.
4. Press [REC] to record the angle and orientation.

Steps	Key	Display
(1) Press [F3] in the Pre-Settings screen. Then enter the Set STA function.	[F3]	[Surveying] [*] F1 Set Job (1) [*] F2 Set STA (2) [] F3 Set B. S. (3) F4 Start (4) F1 F2 F3
(2) Press [F1] and select the [Angle Setting] to input orientation manually.	[F1]	[Set B. S.] F1 Angle Setting (1) F2 Coordinates (2)
(3) Aim B.S. point and then input the azimuth, prism height and backsight point name. Press [ENT] after finishing every input.	Input horizontal angle [ENT]	
(4) Press $[F 1](A L L)$ to start measuring and set the orientation. [REC]: Press this key to finish setting orientation without measurement. [Zero]: Set the azimuth as 0 .	[F1]	BS SET !

(5) Back to Pre-Settings screen. The setting items that have been made are marked with *.	[Surveying]		
	[*] F1 Set Job		(1)
	[*] F2 Set STA		(2)
	[] F3 Set B. S.		
	F4 Start		(4)
	F1	F3	F4

3.2 Set orientation with coordinates

The determination of the direction value can also be carried out using a point with a known coordinate.

Steps:

1. Press [F2] to go to set orientation with coordinates
2. Input the name of orientation point and find the point.
3. Input the prism height and determine it.
4. Use this point to set orientation.

The orientation point can be select from memory or inputted manually.

4. Starting the Applications

The preset applications covers a wide range of measurement tasks. That makes the daily field measurement easier and faster. The all applications can be selected to use are as follows:

- Surveying
- Stakeout
- Free Station
- Tie Distance
- Area
- Remote Height
- COGO
- Road

Steps:

1. Go to the MAIN MENU.
2. Move the focus to [Program] or press the Numeric key 2 to select and go to the PROGRAM MENU.
3. Press [PAGE] to browse the application menu. Press [F1]-[F4] to select and start an application.

5. Surveying

Compared with the Q-Surveying, Surveying has different guides in setting station and set orientation.

Operation: Must first finish setting the station and orientation.

5.1 Individual Point

[IndivPt]:

In the data acquisition, point can be recorded individually. Press this key to switch the screens of Individual Point Measurement and Consecutive Point Measurement.

Steps	Key	Display
(1) Press [F4] \downarrow) twice to display the last page of soft keys.	[F4]	
(2) Press [F2] (IndivPt) to start measuring individual point function.	[F2]	
(3) Input the individual point's name and prism height and press [ENT] to move the cursor to next input item.. If needed, input the code.	Input point name, prism height and code $+$ [ENT]	

5.2 Data

[Data]:
Look over the measured data which are saved in current job.

(3) After inputting the target point's name or wildcard (*), press [ENT] and then press [F4](View) to look over the data. If there is no match point, the program prompts "Pt. not found!" [Job]: Select the job where the measured data is to be viewed.	Input point name/ wildcard [ENT] $+$ [F4]	$[$ [View Neas Pt] Job \vdots DEFAULT Pt. $:$ $*$
(4) Go to View Measured Point screen. Press [PAGE] to turn the page and look over all data field of this point. Press direction key \square and \square to browse the last or next measured point. [Delete]: Delete this point data. [Search]: Back to the Find Point screen.	[PAGE]	

6. Stakeout

The Stakeout Application can calculate lofting elements base on lofting point's coordinate or manually input angle or horizontal distance. The application can continuously display differences, between current position and desired stake out position.
Steps of Stakeout :

1. Set the job.
2. Set the station
3. Set the orientation
4. Extract coordinates from memory. The coordinates may be a measured point or a manually entered fix point.
5. Start staking out. There are three ways to choose: Polar Stakeout mode, Orthogonal to Station Stakeout mode, Cartesian Stakeout mode.

6.1 Set Stakeout Point

- Extract coordinates from job

Steps	Key	Display
(1) After finishing setting the job, setting the station and setting the orientation, press [F4] to start staking out in the Pre-Setting menu. $※^{1}$	[F4]	[Stakeout][*] F1 Set Job (1) [*] F2 Set STA (2) [*] F3 Set B. S. (3) F4 Start (4) F1 F2 F3 F4

$※^{1}$: The settings of job, station and orientation have been elaborated in detail in the previous chapters, here is no longer repeat. Refer to chapters "Setting The Job, Setting The Station, Setting The Orientation".
$※^{2}$: Unlike the other place's points list, the stakeout points are ordered by time. In
the stakeout points list, the newest point is at the back and the fix point is in the front of measured point. But in the other points list, the newest point is at the back and the measured point is in the front of fix point.

- Manual input stakeout point

Press key [Coord.] or [SO-PT] to manual input stakeout point coordinates and then continue staking out.

[Coord.]:

Press [Coord.] and then input a target point's coordinates. Saved this point into job and continue staking out.

[SO-PT]:

Press [SO-PT] to input a stakeout point without point name and being saved into job.

6.2 Polar Stakeout Mode

The meanings of the differences in the Polar Stakeout mode:
$\triangle \mathrm{Hz}$ Difference in direction: If the measured point is located in the right side of stakeout point, the value is positive.
\triangle Difference in horizontal distance: If the measured point is farther than stakeout point, the value is positive.
$\triangle \boldsymbol{4}$ Difference in height: If the measured point is higher than stakeout point, the value is positive.

Steps	Key	Display		
(1) Set all the points that are readied to stake out. Select one stakeout point through search the point name in the job.			$\begin{array}{r} \\ 1 \\ - \\ \hline \\ \hline\end{array}$	

(2) Press [PAGE] to go to page 1/3(Default page). Press direction key and move the cursor to input prism height item. Input the prism height and then press [ENT] to confirm.	[PAGE] \square \downarrow $+$ Input prism height $+$ [ENT]	
(3) Aim at the prism. Press [F2](DIST) to start measuring and calculate the differences between measured point and stakeout point.	[F2]	
(4) Turn the instrument telescope to make the $\triangle \mathrm{Hz}$ equal $0{ }^{\circ} 00^{\prime} 00^{\prime \prime}$ and command the staff to move the prism at the same time. Arrows Meaning: \leftarrow : Look forward from station and move the prism to the left. \rightarrow : Look forward from station and move the prism to the right.		
(5) While the $\triangle \mathrm{Hz}$ equals 0° $00^{\prime} 00$ " , press [F2](DIST) to start measuring and calculate the differences between measured point and stakeout point. The arrow's direction is the direction of the prism need to move.	[F2]	

6.3 Orthogonal to Station Stakeout Mode

Use longitudinal difference and perpendicular difference to indicate the position differences of stakeout point and current prism position.

The meanings of the differences in the Orthogonal to Station Stakeout Mode:
\triangle Length Difference in longitudinal distance: If the measured point is farther than stakeout point, the value is positive.
\triangle Trav. Difference in perpendicular distance: If the measured point is located in the right side of stakeout point, the value is positive.

Steps	Key	Display	
(1) Press [PAGE] to show Orthogonal to Station Stakeout Mode in page 2/3. Set the stakeout point. The stakeout point can be found in the job through inputting point name in the search item.	[PAGE]		
(2) Press direction key and move the cursor to input prism height item. Input the prism height and then press [ENT] to confirm.	Input prism height [ENT]	[Stakeout] $2 / 3$ Search $:$ Pt. $\quad \vdots$ T. H $\quad \vdots$ Length: --- Trav. \vdots --- $\Delta Z / H$ \vdots --- ALL DIST	

6.4 Cartesian Stakeout Mode

Stake out point based on the Cartesian coordinate system. The deviation values are the coordinate differences.

The meanings of the differences in the Cartesian Stakeout Mode:
$\triangle \mathrm{Y} / \mathrm{E} \quad$ The difference in East coordinate between measured point and stakeout point.
$\triangle X / N$ The difference in North coordinate between measured point and stakeout point.

6.5 Polar

Press [Polar], then input the polar stakeout elements: Azimuth and Horizontal distance. Start to stake out after finishing inputs of Azimuth and Horizontal distance.

Steps	Key	Display
(1) Press $[F 4](\downarrow)$ twice to view the second page soft keys.	[F4]	
(2) Press [F1](Polar) to show the dialog as shown in figure.	[F1]	[Polar Stakeout]
(3) Input the stakeout point's name, azimuth and horizontal distance. Press [ENT] to confirm every input and move the cursor to next input item. Press [F4](OK) to go to Polar Stakeout screen after finishing all inputs. ※ ${ }^{1}$	Input point name, azimuth and horizontal distance [ENT] $+$ [F4]	[Polar Stakeout]

(7) Move the prism along the arrow direction to make the value of \triangle equal 0 m . In the process of staking out, if using the Repeat Measurement or Tracking Measurement, the calculation of the differences between measurement point and stakeout point can be displayed in real time and convenient.	
(8) Now it finishes staking out a point. Repeat the previous steps (2) ~ (7) to stake out next point.	[Polar Stakeout] Pt. Azimuth \underline{L} : \square
¹ 1 : The inputs of polar coordinate data won't be saved to job.	

7. Resection

Resection measurement is an application used to determine the coordinate of the instrument station by measuring multiple known points. A minimum of 2 and a maximum of 5 known points can be used to determine the station. It should be used at least 2 known points by distance measurement or at least 3 known points by angle measurement.

Steps	Key	Display
(1) Select "Program" from the [Main Menu] window, press [F3] or number key [3] to enter the Resection application.	[F3]	
(2) Press [F1] in the [Resection] window to set the job.	[F1]	[Resection] [*] F1 Set Job [] F2 Set Error Limits F4 Start F1 F2 F4
(3) In [Set Job] window, press [F1] (List) to select a job in memory or press [F2] (New) to new a job. Then press [F4] (OK) to next step.	[F4]	

8. Tie Distance

Tie Distance is an application used to compute slope distance, horizontal distance, height difference and azimuth of two target points which are either measured, selected from the memory, or input using the keypad.

The user can choose between two different methods:

- Polygonal: P1-P2, P2-P3, P3-P4
- Radial: P1-P2, P1-P3, P1-P4

Start Tie Distance application through "Main Menu" \rightarrow "Program" \rightarrow "Tie Distance".

8.1 Polygonal

While Polygonal tie distance measuring continuous points, the new tie distance's first point will use the previous one tie distance's second point(P1-P2, P2-P3, P3-P4…..).

8.2 Radial

While Radial tie distance measuring continuous points, the new tie distance's first point continues using the previous tie distance's first point(P1-P2, P1-P3, P1-P4…..).

| Steps | Key | Display | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

(3) Press [F2] to select the Polygonal tie distance.	[F2]	$[$ TTie Distance] F1 Polyline F2 Radial (1) 	
		F1 F2	
(4) Start to measure the first target point. Aim at the first target point and press [F1](ALL) or [F2](DIST) $+[$ [F3](REC) to finishing measurement. ※ ${ }^{1}$	PAGE1 Press [F1] or $[F 2]+[F 3]$		
(5) Start to measure the first target point. Aim at the first target point and press [F1](ALL) or [F2](DIST) + [F3](REC) to finishing measurement. $※^{1}$	PAGE1 Press [F1] or $[F 2]+[F 3]$		$1 / 3$ 1 2 $]$

9. Area \& Volume

Area is an application used to calculate the polygon areas to a maximum of 20 points which connected by straights. The target points coordinate can be measured, selected from memory or entered via keypad in same direction. And the following three methods can be alternately performed. The calculate area is projected onto the horizontal plane (2D).

Figure 9.1 Area Diagram
PO Instrument Point
P1 Start Target Point
P1~P5 Target Point
a Perimeter, polygonal length from start point to the current measure point.

S Calculated area always closed to the start point P1, projected onto the horizontal plane.

Select "Program" from the [Main Menu] window, then press [PAGE] switch to second program list and press [F1] or number key [5] to enter the Area application.

Steps	Key	Display
(1) Select "Program" from the [Main Menu] window, then press [PAGE] switch to second program list and press [F1] or number key [5] to enter the Area/volume app.	[PAGE] [F1] or [5]	

※In all of the above operation, press [ESC] to return to the previous screen.

10. Remote Height

Remote Height is an application used to measure the height to the target (such as electric cable, bridge, etc.) where can't be set prism.

Prism High Known

If the high of prism is known, the calculation formula of the remote height is:

$$
\mathrm{H}=\mathrm{S}^{*} \cos \alpha_{1}{ }^{*} \tan \alpha_{2}-\mathrm{S}^{*} \sin \alpha_{1}+\mathrm{V}
$$

H Height difference between the base point and the remote point
V Prism High
$\alpha_{1} \quad$ Vertical angle to prism
$\alpha_{2} \quad$ Vertical angle to target

Steps	Key	Display
(1) Select "Program" from the [Main Menu] window, then press [PAGE] switch to second program list and press [F2] or number key [6] to enter the Area application.	[PAGE] [F2] or [6]	
(2) After finishing the pre-settings (know more details at the beginning of chapter 5), press [F4] to enter the [Base Pt.] window to start Remote Height app.	[F4]	[Area] [*] F1 Set Job (1) [*] F2 Set STA (2) [*] F3 Set B. S. (3) F4 Start (4) F1 F2 F3
(3) Move the prism just standing below the remote point, then aim at the prism after input the prism high and press [F1] (ALL) or [F2] + [F3] (DIST + REC) to finish the base point measuring. Then enter the [REM PT] window.	[F1] or [F2] [F3]	

10.1 Prism High Unknown

If the high of prism is unknown, the calculation formula of the remote height is:

$$
H=S * \cos \alpha_{1}{ }^{*} \tan \alpha_{2}-S * \sin \alpha_{1}{ }^{*} \tan \alpha_{3}
$$

H Height difference between the base point and the remote point
V Prism High
S Slope distance between instrument and prism
$\alpha_{1} \quad$ Vertical angle to prism
$\alpha_{2} \quad$ Vertical angle to target point (remote point)
$\alpha_{3} \quad$ Vertical angle to base point

Steps	Key	Display
(1) Select "Program" from the [Main Menu] window, then press [PAGE] switch to second program list and press [F2] or number key [6] to enter the Area application.	[PAGE] [F2] or [6]	
(2) After finishing the pre-settings (know more details at the beginning of chapter 5), press [F4] to enter the [Base Pt.] window to start Remote Height app.	[F4]	[Area] [*] F1 Set Job (1) [*] F2 Set STA (2) [*] F3 Set B. S. (3) F4 Start (4) F1 F2 F3
(3) In [Base Pt.] window, press [F4] to second page of function keys, then press [F2] (H.T.?) switch to the situation of prism high unknown to start measuring.	$\begin{aligned} & {[F 4]} \\ & + \\ & {[F 2]} \end{aligned}$	

11. COGO

COGO(Coordinate Geometry)is an application used to perform coordinate geometry calculations by the preset conditions such as , coordinates of points, bearings between points and distance between points.

The COGO calculation methods include:
\diamond Inverse and Traverse
\diamond Intersections
\triangleleft Offset
\diamond Extension

11.1 Traverse

Use the traverse sub application to calculate the plane coordinate of a new point using the bearing and distance from a known point. Offset is optional.

Figure 11.1 Traverse Diagram

Known

PO known point
a Direction from P1 to P2
d Distance between P1 and P2
d1 Positive offset to the right
d2 Negative offset to the left

Unknown

P1 COGO point without offset
P2 COGO point with negative offset
P3 COGO point with positive offset

(6) Input the name of result point in the [Traverse Result] and press [F4](REC) to save the point.	[F4](REC)	[Traverse Result]	
		$\begin{aligned} & \text { Pt. } \\ & \mathrm{N} \\ & \mathrm{E} \end{aligned}$	$\begin{array}{r} 10 \\ 6.369 \mathrm{~m} \\ \hline 3.536 \mathrm{~m} \end{array}$

※ In all of the above operation, press [ESC] to return to the previous screen.
※ The result point is plane data.

11.2 Inverse

Use the inverse sub application to calculate the distance, direction, height difference between two known points.

Figure 11.2 Inverse Diagram

Known

PO First known point
P1 Second known point
Unknown
a Direction from P0 to P1
S Slope distance between P0 and P1
d1 Horizontal distance between P0 and P1
d2 Height difference between P0 and P1

Steps	key	Display
(1) In the [Traverse \& Inverse] screen, press [F1] or [1] to enter the Inverse sub application.	[F1] or [1]	[Traverse\&Inverse] F1 Inverse F2 Traverse
(2) There are four ways to get the known point for inverse calculation. A: Input the name of known point in"Pt." field in [Traverse] screen and press [F1](Meas.) entry the [COGO Meas] Input prism height in the "T.H." field on [COGO-Meas], then aim the prism and press [F1](ALL) or [F2](DIST) + [F3](REC) to measuring and saving the point for inverse calculation.	Input point name +[F1](Mea s.) [F1](ALL) Or [F2](DIST) $+$ [F3](REC)	A: Get the known point by COGO-Meas COGO-Meas.
B: Press [F1](List) in [Traverse] screen, use the key [$\mathbf{\Delta}] \backslash[\mathbf{\nabla}]$ to select a Known point in the point list for inverse calculation, then press [F4](OK) to be done.	$\begin{aligned} & \text { [F1](List) } \\ & + \\ & {[\mathrm{F} 4](\mathrm{OK})} \end{aligned}$	B: Select the point by list in the instrument.

※ In all of the above operation, press [ESC] to return to the previous menu.
※ The result point is plane data.

11.3 Bearing-Bearing Intersection

Use the bearing-bearing (BRG-BRG) sub application to calculate the intersection
point of two lines. A line is defined by a point and a direction.

Figure 11.3 BRG-BRG Diagram

Known

PO First known point
P1 Second known point
a1 Direction from P0 to P2
a2 Direction from P1 to P2

Unknown

P3 COGO point

| in the [BRG-BRG Result] and |
| :--- | :--- | :--- |
| press [F4](REC) to save the |
| point. |

※ In all of the above operation, press [ESC] to return to the previous menu.
※ The result point is plane data.

11.4 Bearing-Distance Intersection

Use the bearing-distance (BRG-DST) sub application to calculate the intersection point of a line and a circle. The line is defined by a point and a direction. The circle is defined by the center point and the radius. The result may be have 1 intersection point, may be have 2 points, or may be have no one.

Figure 11.4 BRG-DST Diagram

Known

PO First known point
P1 Second known point
a1 Direction from P0 to P2 or P3
$r \quad$ Radius, as the distance from P1 to P2 or P3
Unknown
P2 First COGO point
P3 Second COGO point

※ In all of the above operation, press [ESC] to return to the previous menu.
※ The result point is plane data.

11.5 Distance-Distance Intersection

Use the distance-distance (DST-DST) sub application to calculate the intersection point of two circles. The circles are defined by the known point as the center point and the distance from the known point to the COGO point as the radius. The result may be have 1 intersection point, may be have 2 points, or may be have no one.

Figure 11.5 DST-DST Diagram

Known

P1 First known point
P2 Second known point
r1 Radius, as the distance from P1 to P3 or P4
r2 Radius, as the distance from P2 to P3 or P4

Unknown

P3 First COGO point
P4 Second COGO point

Steps	key	Display		
(1) In the [Intersection] screen, press [F3] or [3] to enter the DST-DST sub application.	[F3] or [3]	[Intersection]		
		F1 BRG-BRG		(1)
		F2 BRG-DST		(2)
		F3 DST-DST		(3)
		F4 LNLN		(4)
		F1 F2	F3	F4

(2) Input the name of first point in "PT1" field. ※ There are four ways to get the known point for DST-DST calculation. Please refer to the step (2) in the "COGO Traverse".	Set first point	
(3) Move the focus to "HD1" by using [\mathbf{V}] key and input the first radius after set first point.	$[\mathbf{\nabla}]$ Input first radius	
(4) Move the focus to "PT2" by using [$\boldsymbol{\nabla}$] to setting second point.	$[\boldsymbol{\nabla}]$ Set second point	
(5) Move the focus to "HD2" by using [$\boldsymbol{\nabla}$] and input the second radius after set second point.		
(6) When all of the data are entered correctly, press [F2](Result) to calculate the intersection point and show the results. Input the name of result point	[F2]	[Dst-Dst Result] Pt. \vdots 10 N \vdots 6.369 m E \vdots 3.536 m

in the [DST-DST Result] and
press [F4](REC) to save the
:---
point.
Press [F1] to switch to view
results.

※ In all of the above operation, press [ESC] to return to the previous menu.
※ The result point is plane data.

11.6 Line-Line Intersection

Use the line-line (LNLN) sub application to calculate the intersection point of to lines. A line is defined by two points.

Figure 11.6 LNLN Diagram

Known

P1 First known point
P2 Second known point
P3 Third known point
P4 Fourth known point
L1 Line from P1 to P2
L2 Line from P3 to P4
Unknown
P5 COGO point

Steps	key	Display		
(1) In the [Intersection] screen, press [F4] or [4] to enter the LNLN sub application.	[F4] or [4]	$\begin{aligned} & \text { [Intersectio } \\ & \hline \text { F1 } \\ & \text { BRG-BRG } \\ & \text { F2 } \\ & \text { BRG-DST } \\ & \text { F3 } \\ & \text { DST-DST } \\ & \text { F4 } \\ & \text { LNLN } \end{aligned}$		(1) (2) (3) (4)
		F1 F2	F3	F4

※ In all of the above operation, press [ESC] to return to the previous menu.
※ The result point is plane data.

11.7 Distance-Offset

Use the distance-offset (DistOff) sub application to calculate the foot point (COGO point) coordinates of offset point to baseline, the baseline is defined by two known points, and the longitudinal and offset distance of the offset point in relation to the line.

Figure 11.7 DistOff Diagram

Known

P1 Start point
P2 End point
P3 Offset point

Unknown

d1 \triangle Line
d2 \triangle Offset
P4 COGO point (foot point)

	[F1] or [1]	[0ffsets] F1 Fist0ff F2 Set Pt
(2) Set the start point, end point and offset point one by one. ※ There are four ways to get the known point for DistOff calculation. Please refer to the step (2) in the "COGO Traverse".	Set the known points	
(3) When all of the points are set correctly, press [F2](Result) to calculate the intersection point and show the results. Input the name of result point in the [DistOff Result] and press [F4](REC) to save the point.	$\begin{aligned} & {[\mathrm{F} 2]} \\ & + \\ & {[\mathrm{F} 4]} \end{aligned}$	

※ In all of the above operation, press [ESC] to return to the previous menu.
※ The result point is plane data.

11.8 Set Point

Use the Set Point (Set Pt) sub application to calculate the coordinate of a new point in relation to a line from known longitudinal and offset distance.

Figure 11.8 Set Point Diagram

Known

P1 Start Point
P2 End Point
d1 \triangle Line
d2 \triangle Offset

Unknown

P3 COGO point

※ In all of the above operation, press [ESC] to return to the previous menu.
※ The result point is plane data.

11.9 Extension

Use the Extension sub application to calculate the coordinate of extended point from a known baseline.

Figure 11.9 Extension Diagram

Known

P1 Baseline Start Point
P2 Baseline End Point
L1, L2 Extension Distance

Unknown

P2, P4 Extended COGO Point

Steps	Key	Display			
(1) In the [COGO Menu] screen, press the [F4] or number key [4] enter the [Extension] screen.	[F4] or [4]	F1 Traverse\&Inverse F2 Intersection F3 Offsets F4 Extension			(1) (2) (3) (4)
		F1	F2	F3	F4

※ In all of the above operation, press [ESC] to return to the previous menu.
※ The result point is plane data.

12. Road

Road is an application used to measure or stake out points relative to a defined element. The element can be a line, curve or spiral. Chainage, incremental stake outs and offsets(left and right) are supported.

Setting job, setting station and setting backsight must be done before road define and staking out.

12.1 Road Manage

After setting up the job, station and back sight point, user can start to define the road path.

Steps	Key	Display
(1) Pressing key [F4] to start the road function after job setting, station setting and BS.	[F4]	[Road] $[*]$ F1 Set Job (1) $[*]$ F2 Set STA (2) $[*]$ F3 Set B. S. (3) F4 Start (4)
		F1 F2 F3 F4
(2) Pressing key [F1] Define road path.	[F1]	[Road] F1 Define road path F2 Road Stakeout F3 Result. Setting out F4 (3) Fransfer
		F1 F2 F3 F4

Clicking F1 Add to add the necessary info $※^{2}$.	F1	[PT]		
		Chainage N \vdots E \vdots Radius \vdots slownesscu slownesscu		
		Add	View	
※ 1 : The type combo must be Line-Spiral-Curve-Spiral-Line, Line-Spiral-Spiral-Line,Line-Curve-Line, Spiral-Curve-Spiral. ※2: Maximum 20 sets of data can be used in Intersection Method.				

12.2 Road Stakeout

After the road had been designed and had been implemented into the program, user can start to do road stakeout.

Steps	Key	Display
(1) In Road program, click F2 Road Stakeout to enter the function.	[F2]	[Road] F1 Define road path F2 Road Stakeout F3 (1) Result. Setting out (3) F4 Transfer F1 F2 F3 F4
(2) Pressing F1 Sidestake Stakout to go for sidestake stakeout interface. Input the chainage and the coordinates of the points that should be stakeout will be loaded and you will start the staking job. [T.H]:Target height [Increment]: Interval between to stakes. [Offset]: the offset to the center stake, left is negative while right is positive.	[F1]	

12.3 Result.Setting out

After the staking out, the result can be checked.

Steps	Key	Display
(1) Click F3 Result.Setting out for the result checking.	[F3]	[Road] F1 Define road path (1) F2 Road Stakeout F3 Result. Setting out (3) F4 Transfer
(2) All the result with corresponding result can be viewed here.	[F1]	

12.4 Transfer

User can import the predefined road data for staking out while he can also export the result. Either by serial com port or by USB disk. By clicking F4 in the home button then there will come for the import and export.

[PHI]:Means the intersection data. [Sec]:refer to the element method [TXT]: is for the stake data. All data mentioned above can be created by Hi-Survey.	[F3]	[Transfer]	
		Transfer : Mode $:$	$\begin{aligned} & \text { Import } \\ & \text { RS232C } \end{aligned}$
		Source	PHI ${ }^{1 /}$
		Back Source	OK

13. Stakeout Reference Element

Stakeout Reference Element is used for making Reference Element stakeout and check easier, such as building, road cross section, or simple excavation. User can define a Reference Line/ARC, according to measuring result, to calculate out the deviated difference\& elevation difference between measuring point and reference line/arc. Reference element function include:
\triangleleft RefLine
\diamond RefArc
\diamond RefSurface

13.1 RefLine

User need to define a reference line through a known base line. The reference line can be shifted in longitudinal, horizontal, vertical direction, or rotate around the first base point as needed. The line after shift is as reference line, all observed data refer reference line. User can choose the first point, second point or mean point in refline direction as referred elevation point.

Refline schematic diagram:

		[Input Coord.]	
		Job \vdots Pt. \vdots N \vdots E \vdots Z \vdots	DEFAULT DEFAULT 0.000 m 0.000 m 0.000 m
		Back	OK
(3) After defining first point of baseline, enter into interface of second point definition, the way is same as with first point.	[F1] or $[\mathrm{F} 2]+[\mathrm{F} 3]$ or $[\mathrm{F} 4]+[\mathrm{F} 1]$ or $[\mathrm{F} 4]+[\mathrm{F} 2]$ or $[\mathrm{F} 4]+[\mathrm{F} 3]$	[Reference Line] Measure PT1 to first point! PT1 \vdots	
(4) After baseline definition, enter [Reference Line-Main] interface, select settings through $[\boldsymbol{\Delta}] \backslash[\boldsymbol{\nabla}]$, input translation and rotation parameters. Press [F4]((%5Cdownarrow)) to enter [Reference Line-Main] page, press [$\mathbf{~}] \backslash[\$]$ to choose Ref.Hgt, after set up. \aleph^{1}	$[\boldsymbol{\Delta}] \backslash[\mathbf{\nabla}]$ Input parameter [F4] $+$ $[\mathbf{4}] \backslash[>]$	[Reference Lin Length $\quad:$ Enter values to Offset \vdots Line \vdots Line Height \vdots Rotate \vdots Gird Meas. NewBL Zero [Reference Lin PT1 PT2 Length Enter values to Ref. Hgt	
		Gird Meas. NewBL Zero	Stake \downarrow Segment IF

(5) In the interface of [Reference Line-Main], if baseline needs to be redefined, press $[F 4](\downarrow)$ to shift to subscript function and press [F1] (NewBL) to redefine new baseline.	$\left\lvert\, \begin{aligned} & {[\mathrm{F} 4]} \\ & + \\ & {[\mathrm{F} 1]} \end{aligned}\right.$	[Reference Line-Main] 1/2 -			
		Length : $\quad 360.555 \mathrm{~m}$Enter values to shift line!			
		Offset	:	5.000 m	
		Line		2.000 m	
		Height		10.536 m	
		Rotate		$1^{\circ} 02^{\prime} 03^{\prime \prime}$	
		Gird	Meas.	Stake	\downarrow
		NewBL	Zero	Segment	-
(6) In the interface of [Reference Line-Main] , input translation parameters, if you need to clear, press [F4] (\downarrow) to shift subscript function, press [F2] (Zero) to recover input parameters to zero.	$\begin{aligned} & {[\mathrm{F} 4]} \\ & + \\ & {[\mathrm{F} 2]} \end{aligned}$	[Reference Line-Main] $2 / 2$ PT1 \vdots PT2 \vdots Length $\vdots$$\quad 360.555 \mathrm{~m}$,			
		Gird	Meas.	Stake	\downarrow
		NewBL	Zero	Segment	k

$※^{1}$ Ref.Hgt options:
PT1 : The elevation value of defined first point
PT2 : The elevation value of defined second point
Equal : Average value of defined two endpoints' elevation
None : Not perform elevation difference calculation
※ In above operation, press [ESC] to return to previous menu

- Stakeout Grid

Steps	Key	Display
(1) In the interface of [Reference Line-Main], press [F1] (Gird) to enter the [Grid Definition].	[F1]	
(2) In the [Grid Definition] interface, use [\boldsymbol{A}] \ [$\boldsymbol{\nabla}$] to select input box, use keyboard to enter start chainage of gird and increment grid points, then press [F4](OK) to next step.	$[\mathbf{\Delta}] \backslash[\mathbf{\nabla}]$ Input parameters [F4]	[Grid Definition] Enter start chainage of grid! Start Chain: 1.147m Increment grid points

(3) In [Stakeout Grid] interface, use [$\mathbf{4}] \backslash[$] to select the offset, chainage, then press [F1](ALL) or [F2]+[F3] (DIST+REC) to save this measuring point data.	$[\mathbf{4}] \backslash[>]$ [F1] or [F2]+[F3]			
		ALL DIST	REC	EDM

※ In above operations, press [ESC] to return to previous menu.

- Measure Line\&Offset

Steps	Key	Display
(1) In interface of [Reference Line-Main], press [F2] (Meas.) to enter [Measure Line\&Offset] interface.	[F2]	
(2) There are many methods to obtain points for calculating Line\&Offset A: Input the name of point, press [F1](ALL) to measure current point, calculate and display the offset to refline , then save this point data.	Input point name [F1]	A: Get the target point by measure.
B: Input point name, press [F2] (DIST) to measure target point, calculate and display this point's offset to refline, then press [F3](REC) to save this point data.	$\begin{aligned} & {[F 2]} \\ & + \\ & {[\mathrm{F} 3]} \end{aligned}$	B: Get the target point by DIST+REC.

※ In above operation, press [ESC] to return to previous menu.

- Orthogonal stakeout

Steps	Key	Display
(1) In [Reference Line-Main] screen, press [F3](Stake) enter [Orthogonal stakeout] to input stakeout values.	[F1]	
		Gird Meas. Stake \downarrow
		NewBL ${ }^{\text {Lero }}$ Segment
(2) In interface of [Orthogonal Stakeout] use [$\mathbf{\Delta}] \backslash[\boldsymbol{\nabla}]$ to select input box, use keyboard to set every offset parameters, then press [F4](OK) to enter orthogonal stakeout.	$\begin{aligned} & {[\mathbf{\Delta}] \backslash[\mathbf{\nabla}]} \\ & + \\ & \text { Input } \\ & \text { parameter } \\ & \mathrm{S} \\ & + \\ & {[\mathrm{F} 4]} \end{aligned}$	
(3) In [Orthg. Stakeout] interface, measure and save current measuring point through [F1](ALL) or [F2]+[F3](DIST+REC), and it will return to [Orthogonal Stakeout] screen.	[F1] or [F2]+[F3]	

※ In above operation, press [ESC] to return to previous menu.

- Segment stakeout

Steps	Key	Display		
(1) In [Reference Line-Main] screen, press [F4]((%5Cdownarrow)) and Press [F3] to enter [Segment Definition] interface	$\begin{aligned} & {[\mathrm{F} 4]} \\ & + \\ & {[\mathrm{F} 1]} \end{aligned}$	Reference Line-Main] $1 / 2$ 2		
		Gird Meas.	Stake	\downarrow
		NewBL Zero	Segment	K-

$※^{1}$ Segment options:
Start : Misclosure at the start point
EndPt : Misclosure at the end point
Equal : Divide Reference Line equally into several pieces
※ In above operation, press [ESC] to return to previous menu.

13.2 RefArc

RefArc can be defined through "Centre, Start Point" or "Start\&End Pt, Angle", and you can calculate Line\&Offset of point to refarc. The application program allow user define a refarc and finish below task about refarc:

- Measure Line\&Offset

RefArc schematic diagram:

Known			
L1	RefArc	P1	Start PT
O	Centre	P2	End PT
P0	STA		
	Unknown		
p	Measure point		
d1	Δ Line		
d2	Δ Offset		

- Centre, Start PT

※ ${ }^{1}$ When the centre and start point coincide, the system error reporting "invalid target data, please input again, select "yes" or press [ESC], return to the measurement center interface, and restart the definition of arc.
※ In above operation, press [ESC] to return to previous menu.
- Start\&End Pt, Angle

Steps	Key	Display
(1) Press the [F1] or the numeric key [9] in the $3 / 3$ page of the main menu, set the job, B.S and enter [Reference Line/ARC] menu, then press the [F2] or the numeric key [2] to enter the definition of RefArc.	[F1] or [9] [F2] or [2]	
		F1 F2

$※^{1}$ AZ1 and AZ2 are start point, end point tangent azimuth respectively . If the input data is not in conformity with the requirements, the instrument will report "invalid target data, please input again", you can select "yes" or press the [ESC] to return to the interface of starting point measurement, start to define arc.
※ In above operation, press [ESC] to return to previous menu.

- Measure Line\&Offset

Steps	Key	Display
(1) Using method of the "Centre, Start Point" or "Start\&End Pt, Angle" defines the reference arc, entering the [Reference ARC-Main Page], and press [F4] (Meas.) to Measure Line\&Offset	[F4]	
(2) There are several methods to obtain the Pt which is used for Measure Line\&Offset A: Enter point name, then press [F1](ALL) to define the Pt.	Input point name [F1]	A: Get the target point by measure.
B: Input point name, Press [F2](DIST) + [F3](REC) to save the Pt , the saved result will be directly put into calculation.	$\begin{aligned} & {[\mathrm{F} 2]} \\ & + \\ & {[\mathrm{F} 3]} \end{aligned}$	B: Get the target point by DIST+REC.
C: Input point name, press [F4]((%5Cdownarrow)) to shift to subscript function,	Input point name [F4]	C: Input the name of the point and find whether it is in memory.

$※^{1}$ Result of Line\&Offset:
Δ Line: Measuring point relative to the start point of arc, if it is beyond the reference
arc , Δ Line will be negative, and on the contrary is positive;
Δ Offset: the offset of the measuring point with respect to the arc in the direction of the radius. If the measuring point is in the circle, the Δ Offset will be positive, and on the contrary is negative.
$\Delta \boldsymbol{l}$: the elevation difference between measuring point and starting point; If it is higher than start point, it will be positive, and on the contrary is negative.
※ In above operation, press [ESC] to return to previous menu.

13.3 RefSurface

Reference Surface is also known as Reference Plane. It is a function that can be used to measure points relative to a reference plane. It can be used to:

- Measuring a point to calculate and store the perpendicular offset to the plane
- Calculating the perpendicular distance form the intersection point to the local X and Z axis. The intersection point is the footprint point of the perpendicular vector from the measured point through the defined plane.
- Viewing, storing and staking out the coordinates of the intersection point.

A reference plane is created by measuring three points on a plane. These three points define a local coordinate system:

- The first point is the origin of a local coordinate system.
- The second point defines the direction of the local Z-axis.
- The third point defines the plane.

X-axis of local coordinate system.
Y-axis of local coordinate system.
Z-axis of local coordinate system.

P1 First point, origin of local coordinate system.
P2 Second point
P3 Third point
P4 Measured point. This point is prob- ably not located on the plane.
P5 Footprint point of the perpendicular vector from P4 to the defined plane. This point is definitely located on the defined plane.
$\mathrm{d}+$ Perpendicular distance from P 4 to the plane.

Functions that can be done by the software buttons:
[New-tar]: To record and save the intersection point and to proceed to measure a new target point.
[Stakeout]: To display stake out values for the intersection point.
[New-sur]: To define a new reference plane.
[Done]: to go back to the program menu.

[Refsurface	result]	$1 / 2$
PT	$:$	12
Offset	\vdots	1.005 m
$\triangle \mathrm{X}$	\vdots	11.893 m
$\triangle \mathrm{PT}$	$:$	4.781 m

6. File manage

File manager contains all functions of input data, edit data and view data.

[Job Manage]	1/2 -
F1 Job	(1)
F2 Fix Pt.	(2)
F3 Meas. PT	(3)
F4 Code	(4)
F1 F2	F3 F4
[Job Manage]	2/2
F1 Mem. stat.	(5)
F1	

1. Job

> All kinds of measurement data are saved in the selected job. Such as Fix Pt., Meas. PT and so on.
$>$ The function can new a job, select a job and delete a job.
$>$ The definition of the job contains the inputting of Job's name and Operator.

1.1 Select a Job

Steps	Key	Display		
(1) Press [F1] in the menu of Job Manager to enter menu of job function.	[F1]	[Job Manage]		1/2 -
		F1 Job		(1)
		F2 Fix Pt.		(2)
		F3 Meas. PT		(3)
		F4 Code		(4)
		F1 F2	F3	F4

1.2 New a Job

[Job]: The name of job inputted arbitrarily by the operator and saving data to the file after this.
[Operator]: The name of operator and it can have the default value.
[Note1] and [Note2] describe the situation of the project and they can have the default values.
> If the job name you inputted exists, the program will give a prompt that Job exists, use another job name.

1.3 Delete a job

2. Fix Pt.

The function can view, edit and delete the fixpoints in all jobs.

2.1 Search Fix Pt.

Input the name of point or "*" to view the fixpoints in the selected job.

Steps	Key	Display
(1) In the interface of View FixPoints, pressing [F1] (Find) to enter the function of finding fixpoints.	[F1]	
(2) There appears a dialog as shown in the picture on the right. Input the name of point or the wildcard of "*", press [ENT] to make sure and press [F4] (OK) to find.	$\begin{aligned} & \text { [ENT] } \\ & + \\ & {[\mathrm{F} 4]} \end{aligned}$	[Find] Job \vdots J0B1 Pt. \vdots 1 $0 K$
(3) Displaying the dialog of finding result. If the point exists in the job, the interface will display the coordinate information of the point. If input the wildcard of "*", you can view all fixpoints by pressing the direction key of left or right.		

2.2 Add Fix Pt.

Steps	Key	Display			
(1) In the interface of View FixPoint, pressing [F2] (New) to enter the function of new fixpoint. If you want to change the job which need to new points, you can press [Job] to select the target job.	[F2]	[View FixPoint]			
		Job			
		Pt.			61
		N			
		E		1.	
		Z			
		Find	New	Edit	\downarrow

2.3 Edit Fix Pt.

The function can edit the fixpoints in the memory.

Steps	Key	Display
(1) In the interface of View FixPoint, you can find the data of need to be edited by pressing the direction key of left or right or in the function of finding. If you want to change the job which the point needs to be edited, you can press [Job] to select the target job.		
(2) Press [F3] (Edit) to enter the interface of Edit Fixpoint. The screen displays the point data. Input the new point's name and coordinate and press [ENT] to move the cursor to the next row. When the data doesn't need to be edited, you can press [ENT] directly.		[Edit FixPoint] $7 / 22$ Job \vdots
(3) Press [F4] (OK) to save the edited data after finishing inputting. Program gives a prompt whether to overwrite or not and press [F4] (OK) to over right and save.	[F4]	[Edit FixPoint] $7 / 22$ Job \vdots

2.4 Delete Fix Pt.

Delete the selected fixpoint from the job.

Steps	Key	Display
(1) In the interface of View FixPoint, you can find the data of need to be deleted by pressing the direction key of left or right or in the function of finding, then press [F4] to switch to the second page of soft key. If you want to change the job which the point needs to be deleted, you can press [Job] to select the target job.	[F4]	[View FixPoint] 7/22 Job \vdots J0B1 Pt. \vdots P7/। N \vdots 2.000 m E \vdots 3.000 m Z \vdots 1.000 m
(2) Press [F1] (Delete) to start the function of deleting data, the interface as shown the dialog on the right. Press [F4] (OK) to delete data and press [F1] (No) to cancel the operation.	[F2]	If delete data? Data cannot recover!
(3) The interface backs to the previous menu.		[View FixPoint] $7 / 22$ Job \vdots J0B1 Pt. \vdots P7/। N \vdots 2.000 m E \vdots 3.000 m Z \vdots 1.000 m Find New Edit \downarrow Delete Job k

3. Meas. Pt.

The measurement data in the job can be searched, displayed, and part of them can be deleted.
3.1 View the measurement data

Steps	Key	Display	
(1) In the menu of Job Manager, press [F3] to enter the function of Meas.PT.	[F4]	$\left[\begin{array}{ll}{[J o b} & \text { Manage] } \\ \text { F1 } & \text { Job } \\ \text { F2 } & \text { Fix Pt. } \\ \text { F3 } & \text { Meas. PT } \\ \text { F4 } & \text { Code }\end{array}\right.$	(1) (2) (3) (4)
		F1 F2	F3 F4
(2) The default viewed job is the current job in the program, if you want to view the measurement data in other jobs, please press [F1] (Job) to enter the list of job to select.	[F2]	[View Meas Pt] Job \vdots Pt. \vdots 	DEFAULT View
(3) The default viewed points are all points in the job and using the wildcard character to stand for. If want to view a certain point, you can input the name of the point and press [F4] to view.	[F4]		DEFAULT View

3.2 Delete measurement data

The not good and the repeating measurement data can be deleted.
The station data and the last piece of data in the data items can not be deleted.

Steps	Key	Display
(1) After finding the measurement point data which need to be deleted, press [F1] to delete.	[F1]	[View Meas Pt] $1 / 28$ Pt. \vdots 6 Job \vdots DEFAULT Type \vdots Meas. HA \vdots 226° 43^{\prime} $06^{\prime \prime}$ VA \vdots 89° $26^{\prime} 11^{\prime \prime}$ Date \vdots 2015.05 .23 Delete Search
(2) The window of program prompts whether to delete or not. Press [F4] to make sure to delete and press [F1] to cancel the operation.	[F4]	If delete data? Data cannot recover!

(3) After the data is deleted, the screen displays the next piece of data.	[F4]	[View Meas Pt]	1/27
		$\begin{array}{ll}\text { Pt. } \\ \text { Job } & \vdots \\ \end{array}$	DEFAULT ${ }^{6}$
		Type	Meas. $226^{\circ} 43^{\prime} 06^{\prime \prime}$
			$89^{\circ} 26^{\prime} 11^{\prime \prime}$
		Date	2015.05. 23
		Delete	Search

4. Code.

Here can make operations on the code library, such as new, finding and deleting.

4.1 Input Code

Every code has a note and up to 8 characters attributes.

[View Co		1/5	
Code			TREE ${ }^{\text {d }}$
Note	.		
Info 1	:		GREEN
Info 2			
Info 3	:		
Info 4	:		
Find	New		Delete

GSI-The introduction of code' attributes:
Code: Name of the code
Note: Additional annotation
Info1: The other editable information

Info8: Other information

Steps	Key	Display		
(1) In the menu of Job Manage, pressing [F4] to enter the function of Code.	[F4]	$[$ [Job F1 F1 Fobage] F2 Fix Pt. F3 Meas. PT		1/2 (1) (2) (3) (4)
		F1 F2	F3	F4

4.2 View Code

Steps	Key	Display		
(1) In the menu of Job Manage, pressing [F4] to enter the function of Code.	[F4]	$[$ [Job F1 F1 Fobage] F2 Fix Pt. F3 Meas. PT		1/2 - (1) (2) (3) (4)
		F1 F2	F3	F4

4.3 Delete Code

Steps	Key	Display
(1) After entering the dialog of code function, press the direction key of left or right to delete the code which need to be deleted. You can also press the key of [Find] to find the corresponding code.		[View Code] Code $1 / 5$ Note \vdots TREE Info 1 \vdots GREEN Info 2 \vdots Info 3 3 \vdots Info 4 \vdots Find New Delete
(2) After finding the code need to be deleted, press [F4] and program will give a prompt whether make sure to delete. A: If the deleted code is find by pressing the direction keys, after the code is deleted, the screen will display the next code. B: If the deleted code which find by press the key of [Find], after the code deleted, the interface displays an empty code, it means that all fields are empty. If there is more than one code matching the finding condition, it will display the next code.	[F4]	A: B:

5. Memory Statistics

Display the information of the memory usage and format the memory.
Format the memory can delete all data of job, code and road. The setting of application also can be reset, please operate carefully.

Steps	Key	Display
(1) In the menu of Job Manage, press [PAGE] and display the second page of the menu, press [F1] to enter the function of memory statistics.	[F1]	
(2) Program displays the disk list of the instrument, the default are "A: Local Disk", if instrument has loaded the SD card, it will display the additional disk of " B : SD".		[Select Disk] A:Local Disk B:SD Card Prop. \square 0K
(3) Press [F1] (Prop.) can view the properties of the disk, including free space.	[F1]	[Disk Info.] を Disk Name : A:Local Disk Disk Space: 2036 KB Used Space: 66 KB Free Space: 1970 KB Format 0 K
(4) Press [F2] (Format) can format the disk, program will give a prompt to make sure to format or not, press [F4] to make sure to format and press [F1 to cancel the operation.] ※ ${ }^{1}$	[F2]	Sure to format? Data cannot recover!

$※^{1}$: SD card does not support the formatting operation in the instrument.

7. Data Transfer

This function is doing data transmission between instrument and computer, or between instrument and removable device. This function includes 2 parts, import and export.

The data transmission between instrument and removable device must have U Disk plugged in.

Note: The machine supports up to $8 \mathrm{G} U$ disk read and write, when running the program, don't insert or pull out the U disk. If you pull out the U disk when the instrument checking it, the subsequent operations may cause error!

1. Data Import

User can use this function to transfer fixed points data or code data to instrument from computer via RS232 cable. User can also transfer fixed points data to instrument via U Disk.

Import: Fixed Points, Code
Method: RS232, U Disk
Format: CASS, GTS-7, CSV, GSI(For U Disk)
Source: Data file in U Disk (For U Disk)
Job: Target job that data been transfer to.

2. Data Export

User can use this function to transfer internal data (fixed points, measurement data, and code) from instrument to computer or u disk.

Export: Fixed points, measure data, and code.
Method: RS232C, U Disk.
Format: CASS, GTS-7 (For fixed point, U Disk)
HTF format, GSI format, GTS-7, CSV, CASS(For measure data, U Disk)
Job: Job needs to export.

Steps	Key	Display	
(1) In main menu, choose " 4 Transfer" to enter "Data Transfer" menu.	[4]	[Transfer]	
		F1 Import Data	(1)
		F2 Export Data	(2)
	[F2] or [2]	F1 F2	
Pressing [F2] or [2] enters "Export Data".。		[Export Data]	
		F1 Job Data	(1)
		F2 Code Data	(2)
		F1 F2	

8. Instrument Setting

1. General Setting

In Setting Menu, choose " 1 General" to enter "General Setting".

Light	Low (1) Hz increment:			Right 1
Trigger Key	DIST \#	V-Setti		Zenith
User Keyl	Level	Angle	Unit	
User Key2	NP/P	Min. Re	eading:	$1^{\prime \prime}$
Key Beep	On	Dist.	Unit	Meter
Sector Beep	On	Dist. De	ecimal:	0.0001 (1)
Tilt	Off	Temp.	Unit	${ }^{\circ} \mathrm{C}$
Reset	OK	Reset		OK

Fields of General Setting

Field	Description
Light	High, Medium, Low, Off. 4 Levels of background light.
Contrast	1~9. Set the display contrast. Trigger Key ALL: Dist and record. DIST: Only dist.
User Key 1	Configures R_{1} with a function from the FNC menu.
User Key2	Configures R_{2} with a function from the FNC menu.

Key Beep	The beep is an acoustic signal after each key stroke. On: Enable beep. Off: Disable beep.
Sector Beep	On: Sector Beep sounds at right angles $\left(0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\right.$ or $0,100,200,300$ gon). Off: Sector Beep disabled.
Tilt	On: Biaxial compensation enable. Off: Tilting compensation disable. X Only: Single axis compensation enable.
Hz increment	Right: Set horizontal angle to clockwise direction measurement. Left: Set horizontal angle to counter-clockwise direction measurement.
V-Setting	Zenith: Zenith $=0^{\circ}$; Horizon $=90^{\circ}$ Horiz.0: Zenith $=270^{\circ}$; Horizon $=0^{\circ}$ Vert90: Zenith $=90^{\circ}$; Horizon $=0^{\circ}$;

	Positive above horizon, negative below horizon. Slope: Zenith $45^{\circ}=100 \%$; Horizon $=0 \%$. Positive above horizon, negative below horizon. Exceed 300\% shows "--.--\%".
Angle Unit	Sets The units shown for all angular fields. - / " Degree sexagesimal, 0° to $359^{\circ} 59^{\prime} 59^{\prime \prime}$. GON Gon, 0 gon to 399.999 gon. MIL Mil , 0 to 6399.99 mil . The setting of the angle units can be changed at any time. The actual displayed values are converted according to the select unit.
Mini. Reading	Sets the number of decimal places shown for all angular fields. This is for data display and does not apply to data export or storage. " , " :1"/5"/10" Gon:0.0002/ 0.001 / 0.002

	Mil :0.005 / 0.02 / 0.05
Dist. Unit	Sets the units shown for all distance and coordinate related fields. Meter Meters [m]. US-ft US feet [ft]. INT-ft International feet[fi]. ft-in1/8 US feet-inch-1/8 inch [ft].
Dist. Decimal	Sets the number of decimal places shown for all distance fields. This is for data display and does not apply to data export or storage. 3Display distance with three decimals. 4Display distance with four decimals.
Temp. Unit	Sets the units shown for all temperature fields. oCDegree Celsius.
Auto-Off	30min Auto power off after 30min's no operation. Off Press. Unit
Permanent The Fahrenheit.	
Sets the units shown for all pressure fields.	
hPA hecto-Pascal.	
mmHg Millimeter mercury.	
inHg Inch mercury.	

Port	RS232C Use serial port as communication interface. Bluetooth Use Bluetooth as communication interface. If instrument does not support Bluetooth, there will be no Bluetooth option here.
Baudrate	Sets the serial port baudrate. 9600/19200/115200
Coord. type	Sets the type of coord. NEZ/ENZ
Language	Changes the software's interface language.

2. EDM Setting

See Chapter "3.2 EDM Setting".

9. Adjust and Tools

1. Adjust

Warning:

The following functions must be carried out under the guidance of professionals, if the operation is wrong, it may lead to the instrument can't work properly!
Through Main Menu \rightarrow " 6 Tools" \rightarrow " 1 Adjust", entering adjust menu, Like below:

Input PIN code(82543), and then press key ENT, the instrument will be turned off.

1.1 View adjust parameters

In Tools Menu, choose "1 Adjust", and then press [F1] to enter "View adjust parameters".

Parameters include Vert. I.E and tilt sensor parameters.

Vert. I.E. :	$93^{\circ} 35^{\prime} 52^{\prime \prime}$
Xk	-0.8400
X0	9
Yk	1. 000
Y0	0

1.2 Adjust Index Error

In Tools Menu, choose "1 Adjust", then press [F2] to enter "Adjust Index Error".

Steps:

Steps	Key	Display
(1) After leveling the total station, aim at target with face left, then press [F4](OK).	[F4]	[Adjust Index Error] F1 reading: $342^{\circ} 11^{\prime} 59^{\prime \prime}$ F2 reading: Vert. I.E.: Take reverse!
		OK
(2) Aim at the same target with face right, and press [F4] (OK).	[F4]	[Adjust Index Error] F1 reading: $342^{\circ} 11^{\prime} 59^{\prime \prime}$ F2 reading: $191^{\circ} 26^{\prime} 31^{\prime \prime}$ Vert. I.E. : Take reverse!
(3) Program will show the result value, press [F4](OK) to save.	[F4]	[Ad just Index Error] F1 reading: $342^{\circ} 11^{\prime} 59^{\prime \prime}$ F2 reading: $91^{\circ} 26^{\prime} 31^{\prime \prime}$ Vert. I. E. : Take reverse!
		- ${ }^{\text {- }}$ OK

Note: If there is no special requirement, the compensator should be turned on before Index error correction.

1.3 Adjust Tilt X

Before compensating for the compensator, make sure that the indicator difference is recalibrated in accordance with 9.1 .2 procedure in the closed compensator state.

First, place the instrument as picture shown below with collimator facing up.

This will help screw A to adjust the inclination of the instrument.

In Tools Menu, choose "1 Adjust", and then press [F3] to enter "Adjust Tilt X".
These are the calibration of x-direction of compensator's vertical axis.

Steps	Key	Display
(1) Level instrument, focus on the reticle of collimator, record the vertical angle V0. Use fine tuning to set vertical angle to $\mathrm{V} 0+3$ ',focus on the reticle center accurately, wait for stable value, press [F4](OK).	[F4]	[Adjust Tilt X] HA $:$ 10° 12^{\prime} $02^{\prime \prime}$ VA $:$ 81° 53^{\prime} $50^{\prime \prime}$ Tilt $:$ -117 Fl up 3^{\prime} $0 K$
(2) Use fine tuning to set the vertical angle to V0-3', focus on the reticle center accurately, wait for stable value, press [F4] (OK).	[F4]	
(3) Use fine tuning to set the vertical angle as VO,focus on the reticle center accurately.		
(4) Reverse the telescope, use face right to focus on the reticle of collimator, record the vertical angle V1.Use fine tuning to set the vertical angle as V1-3',focus on the reticle center accurately, wait for stable value, pressF4(OK).	[F4]	[Ad just Tilt X] HA $:$ 190° 25^{\prime} $38^{\prime \prime}$ VA $:$ 269° 23^{\prime} $45^{\prime \prime}$ Tilt $:$ 96 Fl up 3^{\prime} $0 K$

(5) Use fine tuning to set the vertical angle as V1+3', focus on the reticle center accurately, wait for stable value, press [F4](OK).	[F4]	[Adjust Tilt X]
		HA : $342^{\circ} 11^{\prime} 59^{\prime \prime}$
		VA : $269^{\circ} 29^{\prime} 45^{\prime \prime}$
		$\begin{array}{lcl}\text { Tilt } & \text { : } & 91 \\ & \text { Fl down } 3^{\prime} & \end{array}$
		OK
(6) After finishing, it will display the results, press [F4](OK), save and back to menu.	[F4]	[Adjust Tilt X]
		HA : $342^{\circ} 11^{\prime} 59^{\prime \prime}$
		VA : $269^{\circ} 29^{\prime} 46^{\prime \prime}$
		Tilt : 100
		Xk: 33.0859 X0: -55
		OK

Note: CoK (linear coefficient): If absolute value > 1.5, you need to re-calibrate; In the correction process by pressing the ESC key, will exit, holding compensator parameters unchanged.

1.4 Adjust Tilt Y

In Tools Menu, choose " 1 Adjust", and then press [F4] to enter "Adjust Tilt Y ". These are the calibration of y-direction of compensator's vertical axis.

Steps	Key	Display
(1) Level instrument, focus on the reticle of collimator, record the vertical angle VO. Use fine tuning to set vertical angle to $\mathrm{V} 0+3$ ',focus on the reticle center accurately, then turn the instrument counterclockwise $90{ }^{\circ}$, wait for stable value, press [F4](OK) , and then turn $90{ }^{\circ}$ clockwise back to the original direction.	[F4]	[Ad just Tilt Y] HA $:$ 10° 12^{\prime} $02^{\prime \prime}$ VA $:$ 81° 53^{\prime} $50^{\prime \prime}$ Tilt $:$ -117 F1 up 3^{\prime} $0 K$

Note: CoK (linear coefficient): If absolute value > 1.5, you need to re-calibrate; In the correction process by pressing the ESC key, will exit, holding compensator parameters unchanged.

1.5 Adjust Tilt Zero

In Tools Menu, choose "1 Adjust", then press [F4] +[F1] to enter "Adjust Tilt Zero".

Steps:

Steps	Key	Display		
(1) After leveling the total station, aim at target with face left, then press [F4](OK).	[F4]	[Adjust Tilt Zero]		
		X: -15		
		$Y: 19$		
		Take positive!		
				OK
(2) Aim at the same target with face right, and press [F4] (OK).	[F4]	[Adjust Tilt Zero]		
		$X: \quad-20$		
		$Y: 13$		
		Take reverse!		
				OK

(3) Program will show the result value, press [F4](OK) to save.	[F4]	$\begin{gathered} \mathrm{X}=-9 \quad \mathrm{Y}: 16 \\ \text { ENT->Save } \end{gathered}$		
		No		OK

Note: If there is no special requirement, the compensator should be turned on before Index error correction.

1.6 Instrument constant setting

In Tools Menu, choose "1 Adjust", and then press [F4] to enter "Const. Setting". Press [F4](OK) to save after editing the constants.

1.7 Factory setting

In Tools Menu, choose "1 Adjust", and then press [5] to enter "Factory Setting".
If you need to reset the instrument parameters to factory state, you can use this function, press key [F4] (Yes) and then the instrument will auto power off.

2. System information

2.1 View System Information

In Tools Menu, choose "2 Info." to enter "Info".
In this window, user can view detail information about the instrument, includes instrument type and SN, firmware version and date time.

[Info.]		
Inst. No.	\vdots	648164
FW. Ver.	\vdots	V1.0(20151103)
Time	\vdots	$13: 42: 28$
Date	\vdots	2015.11 .12

System Information

2.2 Set System Date

In system information window, press [F1] (Date) to enter "Date Setting" window.
To set the date, input the new date string that in the format of tips, then press
[F4] (OK) to save the new date.
For example: To set date "2015-11-11", input string "20151111", then press [F4] (OK) to save.

Date Setting

2.3 Set System Time

In system information window, press [F2] (Time) to enter "Time Setting" window.

To set the time, input the new time string that in the format of tips, then press [F4] (OK) to save the new time.

For example: To set time" $13: 58: 30$ ", input string " 135830 ", then press [F4] (OK) to save.

Time Setting

2.4 Firmware Upgrade

Warning:
The following functions must be carried out under the guidance of professionals, if the operation is wrong, it may lead to the instrument can't work properly!

This function is prepared for the users to upgrade the instrument software.

1. Input PIN code(82543), and then press key ENT, the instrument will be turned off.

2. Connected to the computer through a serial cable, after installing the correct driver premise, open a HyperTerminal software, configure the correct serial port, it will "bits / sec" is set to 115200, "Data Flow Control" is set to "None" and press OK.

3. Press the power key of the instrument in Hyper Terminal , shown as follows:

Note: Software upgrade operation must be careful once you select the instrument into the upgrade status; if press " 3 " in the picture below, you can also resume running the previous program.

4. Press 1 button on the keyboard into waiting to send program state, and then select "send file".

5. Select the new edition total station software, click on "send" button.
Send File
Folder: F:
Filename:
F:(hts220v1.1.bin
Protocol:

Ymodem	Browse...
Send	

6. It will display the sending application process, and then close the super terminal, starting up after removing the instrument battery and then putting in again. The current software is the new version updated previously.

3. Checkout and calibration

The instrument at the factory has to undergo a rigorous inspection and correction, meeting the quality requirements. However, after long transport or environmental change, its internal structure will be some impact. Therefore, the new purchased instruments should be checked and calibrated before surveying to ensure the precision.

3.1 Tube level

- Checkout

Refer to the chapter "Leveling instrument accurately by tube level" of "Setting up the instrument"

- Calibration

1. In the calibration, if the leveling bulbs diverge from the center, use the foot spiral which parallels the leveling tube to adjust to make the bubble move half of the distance to the center. For the remaining, use the calibration needle to turn the level calibration screw (in the right of the water-level) to adjust the bubble to the center.
2. Turn the instrument for 180°, check that whether the bubble is in the center. If the bubble is not centered, repeat Step (1) until the bubble to the center.
3. Turn the instrument for 90°, use the third foot screw to adjust the bubble to the center.

- Repeat the Steps of checkout and calibration until the bubble in the center in every direction.

3.2 Circular level

-

Checkout

After the level tube calibrated correct, if the circular level bubble also in the center, so there is no need to calibrate

- Calibration

If the bubbles is not in the center, use the correction needle or six angle wrench to adjust the correction screw which under the bubble to make the buble to the center. For calibration, you shall first loosen the calibration screw (1 or 2) which opposite to the direction of the bubble offset, then tighten the other correction screw in the offset direction to make the bubble in the center. When the bubble is in center, make sure the pressures of the three calibration screws are consistent.

3.3 Telescope reticle

- Checkout

After leveling the instrument find a target A with the telescope, make the center of the crosshair focused on target A and fixed horizontal and vertical brake hand wheel.

1. Rotate telescope vertical micrometer hand wheel, move A point to the edge of the field of view (A 'points).
2. If A moves along the vertical line of the crosshair, but A point is still in the vertical line, as the left picture, the crosshair doesn't need to calibrate. If A point deviate from vertical line center, as the right pictured, the crosshair is slant, so need to calibrate the reticle.

- Calibration

1. First, take down the reticle cover between telescope eyepiece and focusing hand wheel, and you can see four fixed screw of the reticle bed (sees attached figure).
2. Unscrew the three fixed screw evenly with screwdriver, rotate the reticle around collimation axis, to make A point on the vertical line of the reticle.
3. Tighten the screw evenly, test the calibration results with the above methods.
4. Put the protective cover back.

3.4 The verticality of collimation axis and horizontal axis(2C)

- Checkout

1. Set a target A in about 100 m away, and make sure the vertical angle of the target is within $\pm 3^{\circ}$. Precisely level the instrument and switch on it.
2. Make the telescope focused on target A in face left, and read the horizontal angle.
For example: horizontal Angle $L=10^{\circ} 13$ ' 10 ".
3. Loosen the vertical and horizontal brake hand wheel, turn the telescope, rotate the alidade to face right and focus on the same target A . Before aiming please tighten the horizontal and vertical brake hand wheel and read the horizontal angle.

For example: level Angle $\mathrm{R}=190^{\circ} 13^{\prime} 40^{\prime}$ '.
4. $2 \mathrm{C}=\mathrm{L}-\left(\mathrm{R} \pm 180^{\circ}\right)=-30 " \geq \pm 20$, need to calibrate.

- Calibration

1. Use the horizontal micrometer hand wheel to adjust the horizontal angle to the right reading which has eliminated the C.
$R+C=190^{\circ} 13$ '40 "-15 "= 190¹3' $25^{\prime \prime}$
2. Take down the reticle bed cover between the telescope eyepieces and focusing hand wheel, adjust the calibration screw of the crosshair on the left and right. First, loosen the screw on one side, and screw up the screw on the other side, move the reticle and focus on target A.
3. Repeat the test Steps, calibrate it to $|2 \mathrm{C}|<10$.
4. Tighten the calibration screws, put the protective cover back.

Notice: Check the photoelectric coaxiality after calibrating.

3.5 Vertical plate index zero automatic compensation

- Checkout

1. Set up and level the instrument, make the direction of the telescope consistent with the line between the center of the instrument and any of the foot screw.
2. The vertical plate index change to zero after switching on, tighten the vertical brake hand wheel, the instrument display the current telescope vertical angle.
3. Slowly rotate feet X to 10 mm around in one direction, the display of the vertical Angle will change from changing until disappear to appear "compensation beyond!" correspondingly, it indicate that the dip angle of the vertical axis is bigger than 3 ', beyond the range of vertical plate compensator design .When rotating the feet spiral recovery in the opposite direction, instruments shows vertical Angle again, if you can see the change when testing it again and again in critical positions, it says that vertical plate compensator works normally.

- Calibration

When you find that instrument compensation is useless or abnormal, it should be sent to the factory for checking.

3.6 Vertical collimation error (I Angle) and vertical collimation zero

value setting

- Checkout

1. Boot after settling and leveling the instrument, focus the telescope on a clear goal A, get the face left reading of vertical Angle L.
2. Turn the telescope to aim A and get the reading R for face right.
3. If the vertical zenith angle is 0°, then $i=\left(L+R-360^{\circ}\right) / 2$, if the vertical Angle level is 0 . Then $\mathrm{i}=\left(\mathrm{L}+\mathrm{R}-180^{\circ}\right) / 2$ or $\left(\mathrm{L}+\mathrm{R}-540^{\circ}\right) / 2$.
4. If $|\mathrm{i}| \geq 10$ ", may be you need reset the zero value of vertical index.
5. Operation refers to chapter "Adjust index error".

Note: repeat the checkout steps to retest the index error again (i Angle). If the index error still can not accordance with requirements, it should check the three Steps of calibration index zero setting (in the course of zero setting ,the vertical angle showed is not compensated and corrected, it is just for reference) to see whether it is incorrect, whether the focusing of target is correct, reset according to the requirements.
6. If it still can not accordant with the requirements after repeated operation, it should be sent to the factory for checking.

3.7 Plummet

- Checkout

1. Set up the instrument to the tripod, draw a cross on a white paper and put it on the ground below the instrument.
2. Adjust the focal length of the optical plummet (for the optical plummet) or switch on laser plummet, move the white paper to make the cross in the center in the field of view (or laser flare).
3. Turn the feet screw, make the center mark of the plummet coincide with the cross center.
4. Rotate alidade, every turn of 90°, observe the contact ratio of the optical plummet and cross center.
5. When rotate the alidade, the center of the optical plummet always coincide with the cross center, there is no need to calibrate. Otherwise you should calibrate as the following methods.

- Calibration

1. Take down the screw cover between the optical plummet eyepiece and the focusing hand wheel.
2. Fix the white paper with a cross, and mark the points when the instrument rotates 90°, as the figure shows A, B, C, D points.
3. Connect the diagonal points $A, ~ C$ and $B, ~ D$ with a straight line, the intersection name of the two line is 0 .
4. Use the calibration needle to adjust the four calibration screw, to make the center mark of the plummet coincide with point O .

5. Repeat Step 4, check and calibrate until it meet the requirements.
6. With the laser plummet, unbolt the laser cover, using 1 \# hex wrench to adjust the three screws, fasten one side and loosen the other side, and adjust the laser flare to point 0 .
7. Put the cover back in place.

3.8 Instrument additive constant (K)

The instrument constant is inspected when it out, and correct it inside the machine, make $\mathrm{K}=0$. Instrument constant change rarely, but we suggest that check it this way for one or two times each year. The checkout should be done in the standard baseline, or you can take the following simple method.

- Checkout

1. Choose a flat field A to set up and level the instrument, mark three points A, B, C in the same line ,their interval is 50 m , and set up the reflection prism accurately.
2. After setting the temperature and pressure data, accurately measure the horizontal distance of $A B$, $A C$.
3. Setting up and centering the instruments accurately, measure the horizontal distance of BC accurately.
4. You can get the instrument ranging constant:
$K=A C-(A B+B C)$
K should be close to 0 , if | $K \mid>5 \mathrm{~mm}$, it should be send to standard baseline field for strict checking, then calibrate it based on the checking value.

- Calibration

If it turns out the instrument constant does not close to 0 but changing after strict inspection, you need to calibrate it, set the instrument additive constant according to the comprehensive constant K value. Such as: the K has been measured as -5 according to the method above, and the original instrument constant is -20 ,so the new value should be set as $-20-(5)=-15$; Input-15 through "menu-> 6-> 3 " and then confirm.
$>$ Use the vertical line of the reticle to orientate, make A, B and C at the same line accurately. There must be a clear mark for point B the ground to focus on.
$>$ Whether the prism center of B coincide with the instrument centers is the guarantee of checking the accuracy, so, you had better use tripod and all-purpose tribrach, for example, if you change the three hand type prism connector with tribrach, keep the tripod and tribrach stable, just change the prism and the part above tribrach of instrument, and it can reduce the error of misalignment.

3.9 The parallelism of collimation axis and photoelectricity axis

- Checkout

1. Set up the reflecting prism 50 meters long from the instrument.
2. Focus on the reflecting prism center with telescope crosshair accurately.
3. Open EDM signal, observe maximum value of the signal, and find the center of the launch axis.
4. Check whether the telescope crosshair center coincide with the emission photoelectricity axis center, if they coincide on the whole we can say it qualified.

- Calibration

If the telescope crosshair center deviates from emission photoelectricity axis center largely, send it to professional repair and calibration department.

3.10 No prism ranging

The red laser beam is coaxial with the telescope, used for no prism ranging, and it is sent by telescope. If the instrument has been calibrated, red laser beams will coincide with the line of sight. External influence such as the vibration, the larger temperature change and other factors may make laser beam and viewing not overlap.
> Before precise ranging, you should check whether the direction of the laser beam is coaxial. Otherwise, it could lead to inaccuracy.

Warning:

Looking straightly at the laser is dangerous.

Prevention:

Don't look laser beams directly, or focus on others.

- Checkout

Put the gray side of the reflector towards the instrument, and put it 5 meters and 20 meters away. Start laser direction function. Focus on the reflector center by the telescope crosshair center, and then check the position of the red laser point. Generally speaking, the telescope is equipped with special filter, human eyes can't see laser point through the telescope, you can see the offset between the red laser point and the reflector crosshair center, you can observe this above the telescope or at the side face of reflector. If laser center coincide with the crosshair center, it indicate that the adjustment meet required accuracy. If the offset between the points position and the mark of crosshair is out of limitless, it need to send it to professional department for adjustment.

10. Technical parameters

Function			Unit	Configuration
Telescope	Imaging		-	Erect
	Magnification		\times	30
	Field of view		-	$1{ }^{\circ} 20^{\prime}$
	Min.target distance		m	1.5
	Effective aperture		mm	40/50(EDM)
Angle measurement $(H z, V)$	2C index error		(')	1.4
	Angle i index error		(")	2.0
	Angle measurement method		-	Absolute encoder
	Minimum reading		(")	1
Distance measurement (IR)	Range	Single prism	km	3
		Triple prism	km	5
		No- prism ${ }^{1}$	m	400/600/800
	Time	Repeated	S	2(first 3)
		Tracking	s	0.8
	Minimum display		mm	0.1
	Accuracy	Prism	mm	$\pm\left(2+2 \times 10^{-6} \mathrm{D}\right)$
		No- prism		$\pm\left(3+2 \times 10^{-6} \mathrm{D}\right)$
Tilt compensator	Compensation method		-	Biaxial type
	Compensation range		(')	± 3
Communication Port			-	RS232C
U disk interface			-	Yes
Bluetooth			-	Yes
Temperature and pressure sensor			-	Yes
SD card			-	Yes

Display	Screen		-	Both sides (280*160, Black and white screen)
	Illumination		-	Support
Laser Plumb	Laser (optional) Laser Plumb		-	Wavelength 635 nm Maximum output power (adjustable): not less than 0.4 mW , not more than 1.0 m W
Level	Tubular level		$\begin{array}{cc} (") \\ \mathrm{mm} \end{array}$	30
	Round level		(') $/ 2 \mathrm{~mm}$	8
Built-in application			-	Support
Battery supply	Type		-	Rechargeable High-energy lithium battery
	Voltage		V	7.4
	Power		W	<2.2
	Battery capacity		mAh	3000
	Working duration	Angle	h	18
		Dist+Angle	h	8 (At $+20^{\circ} \mathrm{C}, \quad$ constant measuring mode)

1: Refers to good weather conditions (visibility is not less than 30 km), the goal of KODAK CAT NO.E1527795 (90\% of reflecting surface)

11. Attachment B File format introduction

These following example to instruct exported file format:

STAST001,1.205,AD
XYZ 100.000,100.000,10.000
BKB BSO01,45.2526,50.0000
BS BS001,1.800
HVD98.2354,90.2314,10.235
SC A1,1.800,CODE1
NEZ 104.662,99.567,10.214
SD A2,1.800,CODE1
HVD 78.3628,92.4612,4.751
SA A3,1.800,CODE1
HV 63.2349,89.2547
NOTE this note

The first record consists of two lines:
The information of first line: record type, name, elevation, code
Such as:

STA refers to test site
BKB refers to back sight Angle data
BS refers to back sight
SC refers to coordinate data
SD refers to distance measurement data
SA refers to Angle measurement data

The second line information: data types, data records
Such as:

NEZ refers that the following data are coordinates
ENZ refers that the following data are coordinates
HVD refers that the following data are horizontal Angle and vertical Angle and slope distance

HV refers that the following data are horizontal Angle and vertical Angle

